Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein vielversprechendes Molekül im Kampf gegen AIDS

01.04.2010
Trotz der zahlreichen Fortschritte im Kampf gegen AIDS ist diese Infektion noch immer für den Tod von Millionen Menschen jährlich verantwortlich.

Ein wichtiger Schwerpunkt der Forschung bleibt die Suche nach neuen zellulären Zielen, auf die die neuen antiviralen Therapien ausgerichtet werden. Forscher des Jean- Pierre-Ebel-Instituts für Strukturbiologie [1] haben ein Molekül entwickelt, das den Sprung des AIDS-Virus von einer Zelle zur anderen verhindert.

Dieses Ergebnis wurde zum Patent angemeldet und in der Fachzeitschrift ASC Chemical Biology vom 19. März 2010 veröffentlicht [2]. In Zusammenarbeit mit Forschern aus Italien und Spanien (im Rahmen des europäischen Netzwerkes CARMUSYS) haben sich die französischen Forscher mit dem Rezeptor DC-SIGN beschäftigt, der in den ersten Phasen der AIDS-Infektion eine Rolle spielt, jedoch als therapeutisches Ziel bisher wenig erforscht wurde. Dieser Rezeptor befindet sich an der Oberfläche der dendritischen Zellen, Zellen des Immunsystems, die insbesondere im Oberflächengewebe des Körpers zu finden sind, z.B. in der Epidermis oder in den Schleimhäuten.

Der Rezeptor DC-SIGN erkennt Pathogene und fängt diese ein, so dass sie von den dentritischen Zellen aufgenommen, zerstört und die Reste an der Oberfläche exponiert werden können. Anschließend wandern die Zellen zu den Lymphoidorganen, um eine Immunantwort auszulösen, d.h. es werden Immunzellen gebildet - so genannte T-Lymphozyten-, die zielgerichtet die Pathogene bekämpfen. Das AIDS-Virus wird jedoch nicht zerstört, sondern nutzt den Rezeptor DC-SIGN, um zu den T-Lymphozyten zu gelangen und sie zu infizieren. Es greift insbesondere die T-Lymphozyten mit Oberflächenantigenen CD4 an (auch CD4+), mit deren Hilfe sich das Virus im ganzen Körper ausbreiten kann.

Das von den Forschern entwickelte Molekül bindet sich an den Rezeptor DC-SIGN und verhindert so den Sprung des AIDS-Virus auf die CD4+-T-Lymphozyten. Das Molekül weist besonders interessante Eigenschaften auf, wie zum Beispiel eine hohe Löslichkeit im physiologischen Milieu, eine geringe Zytotoxizität [3], einen Langzeiteffekt und eine für die Massenproduktion geeignete Struktur. Darüber hinaus könnte es auch bei anderen Pathogenen eingesetzt werden, wie beispielsweise bei Hepatitis C, Dengue-Fieber, Ebola, SARS (Schweres Akutes Respiratorisches Syndrom). Die Wirksamkeit des Moleküls beim interzellulären Transfer des AIDS-Virus wurde in vitro nachgewiesen. Das Molekül selbst ist durch eine gemeinsame Patentanmeldung des CNRS und der Joseph-Fourier-Universität geschützt. Für den nächsten Schritt der vorklinischen Studien in Tiermodellen suchen die Forscher noch Partner.

[1] CNRS (Nationales Zentrum für wissenschaftliche Forschung) / Joseph-Fourier-Universität / CEA (Behörde für Atomenergie und alternative Energien)

[2] "Inhibition of DC-SIGN Mediated HIV infection by a linear trimannoside mimic in tetravalent presentation", Sattin, Daghetti, Thépaut, Berzi, Sanchez-Navarro, Tabarani, Rojo, Fieschi, Clerici & Bernardi - ACS Chemical Biology - 19/03/2010

[3] Fähigkeit einiger chemischer Substanzen (Arzneistoffe, Antikörper, Viren) Gewebezellen zu schädigen Kontakt: Franck Fieschi, Forscher - Labor für Membranproteine, Institut für Strukturbiologie, Joseph- Fourier-Universität / CEA, 41 rue Jules Horowitz, 38027 Grenoble - Tel: +33 4 38 78 91 77 - E-Mail: franck.fieschi@ibs.fr

Quelle: "Lutte contre le VIH : un composé très prometteur" - Pressemitteilung des CNRS - 18.03.2010 http://www2.cnrs.fr/presse/communique/1829.htm

Redakteurin: Léna Prochnow, lena.prochnow@diplomatie.gouv.fr

Wissenschaft-Frankreich (Nummer 180 vom 31.03.2010)
Französische Botschaften in Deutschland und Österreich

| Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/allemand

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics