Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Verzweigen oder dicker werden – Oszillationen bestimmen das Schicksal neuer Adern

26.04.2016

Wenn neue Blutgefäße wachsen, müssen sie sich entscheiden, ob sie neue Seitenäste bilden oder ihren Durchmesser vergrößern. Prof. Holger Gerhardt am Max-Delbrück-Centrum für Molekulare Medizin (MDC) in der Helmholtz-Gemeinschaft machte mit seinen internationalen Forschungsteams eine entscheidende Entdeckung: Gefäßzellen können sich verbünden und sich gemeinsam bewegen. Die Zellen kommunizieren dafür untereinander mit oszillierenden Signalen, wie die Teams mithilfe von Computersimulationen und Experimenten herausfanden. Die Ergebnisse haben Bedeutung für Krankheitsbilder wie Diabetes und Krebs. Sie erschienen nun im renommierten Open-Access-Fachjournal eLife.

„Eine der großen Fragen der Biologie der Blutgefäße ist: Wie werden Größe und Form dieses schlauchartigen Organsystems reguliert?“, sagt Prof. Holger Gerhardt, Gruppenleiter am MDC in Berlin-Buch und am Berliner Institut für Gesundheitsforschung (BIH).


Die fluoreszenzmarkierte Netzhaut einer Maus unter dem Mikroskop. Links: Blutgefäße im Verzweigungsmodus, rechts verdicken sie sich. Die oszillierenden Proteine leuchten rot.

Bild: CC-BY, eLife

Er ist auch in das Deutsche Zentrum für Herz-Kreislauf-Forschung (DZHK) eingebunden. Der Wissenschaftler, der 2014 vom damaligen London Research Institute nach Berlin gezogen ist, erforscht mit seinen Teams am VIB im belgischen Leuven und am MDC die vielen Aspekte der Angiogenese, also der Bildung und des Wachstums von Blutgefäßen.

Das Hormon VEGFA spielt eine Hauptrolle bei dem Wachstum der Adern. Bei niedrigem VEGFA-Spiegel schaltet es die Gefäßzellen in den Verzweigungsmodus – dem Gefäß wachsen neue Seitenäste. Ist es höher konzentriert, lässt es die Gefäße an Durchmesser zulegen. Der zu Grunde liegende Mechanismus war bisher nicht bekannt.

Holger Gerhardts neue Studie klärt die Zusammenhänge auf: „Unsere Studie zeigt, dass sich die Zellen der Adern jeweils neu anordnen, um neue Seitenäste zu bilden oder den Durchmesser zu vergrößern“, sagt der Angiogenese-Spezialist.

Der VEGFA-Spiegel beeinflusst den Notch-Signalweg, über den benachbarte Gefäßzellen miteinander kommunizieren. In der Signalkette werden bestimmte Proteine in der Zelle periodisch hergestellt und gleich wieder abgebaut, was zu einer oszillierenden Aktivität des Notch-Signalwegs in den Gefäßzellen führt.

Bei einem hohen VEGFA-Spiegel synchronisieren sich diese Oszillationen benachbarter Zellen zunehmend miteinander – die Gefäßzellen marschieren im Takt und sorgen so als Kollektiv für die Vergrößerung des Durchmessers des Gefäßes. Bei niedrigem VEGFA-Spiegel geraten die intrazellulären Schwankungen dagegen wieder aus dem Takt. Die Zellen bewegen sich dann individuell und das Blutgefäß befindet sich im Verzweigungsmodus.

Methodisch war das Forschungsprojekt außergewöhnlich herausfordernd, erklärt Holger Gerhardt: „Mit Computermodellen und Experimenten haben wir uns an die erste Hypothese herangetastet. Diese Strategie führte uns letztlich zu den richtigen Fragen und zu den entscheidenden Experimenten.“

Die oszillierenden Proteine sind nur schwer zu beobachten, weil sie so rasch wieder abgebaut werden. Mit einer fluoreszierenden Markierung versehen, waren die Schwankungen zwar in präparierten Netzhäuten von Mäusen sichtbar, die kollektiven Zellbewegungen aber nur in Zellkultur-Versuchen. Für Beobachtungen im lebenden Organismus sind daher bessere, stärker leuchtende Fluoreszenzmarker nötig. An deren Entwicklung arbeiten die Forscher nun.

Der neu entdeckte Mechanismus ist auch auch für die Therapie von Krankheiten relevant, erklärt Gerhardt: „Wir zeigen in der Arbeit auch, dass dieser Mechanismus für die Gefäßverdickung in Krankheitsmodellen für diabetische Retinopathie oder Krebs verantwortlich ist.“

Diabetes verursacht eine Schädigung der Netzhaut-Gefäße (Diabetische Retinopathie) und ist eine der häufigsten Ursachen für die Erblindung bei Erwachsenen. Die unkontrollierte Angiogenese treibt auch die Krebsentwicklung voran. Die Forschungsergebnisse Holger Gerhardts sind somit für Therapien von Bedeutung, die Gefäße wieder normalisieren oder ihr Wachstum hemmen.

Holger Gerhardt ist Forschungsgruppenleiter am MDC und hat eine BIH-Professur für Experimentelle Herz-Kreislaufforschung an der Charité – Universitätsmedizin Berlin, sowie eine DZHK-Professur.

Benedetta Ubezio1, Raquel Blanco1, Ilse Geudens2,3, Fabio Stanchi2,3, Thomas Mathivet2,3, Martin Jones1, Anan Ragab1, Katie Bentley1,4, Holger Gerhardt1,2,3,5,6,7 (2016): „Synchronization of endothelial Dll4-Notch dynamics switches blood vessels from branching to expansion.“ eLife 2016. doi:10.7554/eLife.12167

1 Vascular Biology Laboratory, Cancer Research UK London Research Institute, London, UK; 2 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgien; 3 Vascular Patterning Laboratory, Vesalius Research Center, VIB, Department of Oncology, KU Leuven, Belgien; 4 derzeitige Adresse: Computational Biology Laboratory, Center for Vascular Biology Research, Harvard Medical School, Boston, USA; 5 Max-Delbrück Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Berlin; 6 Deutsches Zentrum für Herz-Kreislaufforschung (DZHK), Standort Berlin; 7 Berliner Institut für Gesundheitsforschung (BIH), Berlin. Benedetta Ubezio und Raquel Blanco haben gleichermaßen zur Arbeit beigetragen.

Weitere Informationen:

http://elifesciences.org/content/5/e12167v1 – Manuskript der Veröffentlichung bei eLife
https://insights.mdc-berlin.de/de/2016/04/verzweigen-oder-dicker-werden-oszillat... – Pressemitteilung auf den Seiten des MDC

Vera Glaßer | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo
18.12.2018 | Universität Ulm

nachricht Einheitliche Qualitätsstandards für die Virenforschung
18.12.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics