Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vererbung mitochondrialer Krankheiten: neue Erkenntnisse aus der biologischen Grundlagenforschung

08.10.2012
Max-Planck-Forscher decken mit neuem Modellsystem Vererbungsprozesse auf: Ob mitochondriale Krankheiten vererbt werden, entscheidet sich weitgehend schon, wenn die künftige Mutter selbst noch ein Embryo ist.

Wenn die Mitochondrien nicht richtig funktionieren, kann das für die betreffende Person Stoffwechselstörungen bedeuten. Mutationen in der mitochondrialen DNA (mtDNA) können auch Muskelschwäche verursachen, neurodegenerative Erkrankungen, Herzprobleme und Diabetes.

Zudem werden sie mit dem Alterungsprozess in Verbindung gebracht. Aber wann und wie entscheidet sich, in welchem Maße potentiell krank machende Mutationen der mtDNA weitervererbt werden? Bisher gab es noch kein geeignetes Modellsystem, mit dem man diese Frage hätte beantworten können. Der Max-Planck-Wissenschaftler Christoph Freyer hat ein neues Modell entwickelt – und jetzt gemeinsam mit einem internationalen Forscherteam Antworten gefunden: Innerfamiliäre Unterschiede im Mutationsgrad von mitochondrialen Genen werden weitgehend schon vor der Geburt der Mutter selbst bestimmt.

Der genetische Bauplan von Lebewesen ist vor allem im Zellkern hinterlegt, in Form von DNA. Aber auch die Mitochondrien einer Zelle enthalten eigene Erbinformationen. Hier spricht man von der „mtDNA“. Da die Mitochondrien eine zentrale Rolle für die Energiegewinnung des Körpers spielen, können sich Mutationen in den Genen der mtDNA stark auf die Gesundheit auswirken. Und die entsprechenden Erkrankungen können über die mutierten Gene an die nächste Generation vererbt werden. Dabei wird die mtDNA ausschließlich von der Mutter weitergegeben.

Die Meinungen über das genaue „Wie und Wann?“ der Vererbung gesundheitsgefährdender mitochondrialer Mutationen gingen bislang jedoch auseinander, da die Vererbung von mtDNA nicht der klassischen Mendelschen Vererbung unterliegt, bei der je ein Satz Erbinformation von Vater und Mutter beigesteuert wird. Christoph Freyer, Wissenschaftler am Kölner Max-Planck-Institut für Biologie des Alterns und am Karolinska Institut in Stockholm, hat daher ein neues Mausmodell entwickelt: Die Hauptrolle spielt hier eine pathogene, also krank machende Mutation in einem mitochondrialen Gen namens „tRNA Methionin“. Mutationen in mitochondrialen tRNA Genen verursachen einen Großteil der bekannten mitochondrialen Krankheiten, obwohl tRNA Gene nur einen Bruchteil der mtDNA ausmachen. Diese Diskrepanz war bisher nicht ausreichend erklärt.

Freyer hat jetzt anhand der tRNA Methionin untersucht, wie sich in der Maus das Mischungsverhältnis zwischen mutierten und nicht mutierten Genen, der „Mutationsgrad“, in drei verschiedenen Phasen des Vererbungsprozesses darstellt: Zunächst hat er die Keimzellen von Mausembryonen analysiert und hier jeweils den Mutationsgrad bestimmt, der von Keimzelle zu Keimzelle variieren kann. Nach der Geburt der Maus hat er erneut die Mutationsgrade in den unreifen Eizellen untersucht. Später nahm er dann die Mutationsgrade in der mtDNA der Nachkommen unter die Lupe.

Diese Erkenntnisse der Grundlagenforschung decken einen Aspekt der mütterlichen Genetik auf, der den Weg für neue Möglichkeiten der genetischen Diagnose ebnen könnte

Freyers zentrale Erkenntnisse zeigen nun, dass die weibliche Keimbahn Mutationen in tRNA Genen nicht aussortiert, im Gegensatz zu Protein-kodierenden Genen, die nach dem aktuellen Wissensstand einer vorgeburtlichen Selektion unterliegen. Ob und in welchem Maße mutierte Gene dann an die nächste Generation weitergegeben werden können, entscheidet sich also großenteils schon, wenn die künftige Mutter selbst noch ein Embryo ist, während der Entwicklung ihrer Keimzellen. Wenn mutierte Gene in den Mitochondrien mit normalen Genen koexistieren, nennt man das „Heteroplasmie“. Das entsprechende Mischungsverhältnis kann von Eizelle zu Eizelle variieren. Der Mutationsgrad wird somit zufällig an die nächste Generation vererbt. So erklären sich auch die Unterschiede innerhalb einer Familie.

Mit diesen wissenschaftlichen Erkenntnissen haben die Forscher um Christoph Freyer einen Aspekt der mütterlichen Genetik aufgedeckt, der den Weg zu neuen Möglichkeiten der genetischen Diagnose ebnen könnte.

Und: Die Beobachtung, dass auch in diesem Modell die Mitochondrien der Maus versuchen, durch Mutationen bedingte Defekte zu kompensieren, eröffnet weitere Einblicke in den Vererbungsprozess mitochondrialer Krankheiten. „Vielleicht“, so Freyer, „könnte man diese Kompensation medikamentös anregen“. Der junge Wissenschaftler möchte sein Mausmodell künftig auch dazu nutzen, Therapien zu testen, die eine Vererbung von Mutationen der mtDNA verhindern könnten.

Originalarbeit:
Christoph Freyer, Lynsey M. Cree, Arnaud Mourier, James B. Stewart, Camilla Koolmeister, Dusanka Milenkovic, Timothy Wai, Erik Hagström, Emmanouella E. Chatzidaki, Rudolph Wiesner, David C. Samuels, Nils-Göran Larsson, Patrick F. Chinnery.
Variation in germ line mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission.
nature genetics November 2012 – Vol 44 No 11 (vorab online publiziert: 7. Oktober 2012)

Kontakt:
Dr. Christoph Freyer
Max-Planck-Institut für Biologie des Alterns, Köln
Mobil: +46 734 424959
E-Mail: christoph.freyer@age.mpg.de

Presse- und Öffentlichkeitsarbeit:
Sabine Dzuck
Tel.: +49 (0)221 478 89605
E-Mail: sabine.dzuck@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Weitere Informationen:
http://www.age.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auflösen von Proteinstau am Eingang von Mitochondrien
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fossiles Zooplankton zeigt, dass marine Ökosysteme im Anthropozän angekommen sind
23.05.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Im Focus: Impfen über die Haut – Gezielter Wirkstofftransport mit Hilfe von Nanopartikeln

Forschenden am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam ist es gelungen Nanopartikel so weiterzuentwickeln, dass sie von speziellen Zellen der menschlichen Haut aufgenommen werden können. Diese sogenannten Langerhans Zellen koordinieren die Immunantwort und alarmieren den Körper, wenn Erreger oder Tumore im Organismus auftreten. Mit dieser neuen Technologieplattform könnten nun gezielt Wirkstoffe, zum Beispiel Impfstoffe oder Medikamente, in Langerhans Zellen eingebracht werden, um eine kontrollierte Immunantwort zu erreichen.

Die Haut ist ein besonders attraktiver Ort für die Applikation vieler Medikamente, die das Immunsystem beeinflussen. Die geeigneten Zielzellen liegen in der...

Im Focus: Chaperone halten das Tumorsuppressor-Protein p53 in Schach: Komplexer Regelkreis schützt vor Krebs

Über Leben und Tod einer Zelle entscheidet das Anti-Tumor-Protein p53: Erkennt es Schäden im Erbgut, treibt es die Zelle in den Selbstmord. Eine neue Forschungsarbeit an der Technischen Universität München (TUM) zeigt, dass diese körpereigene Krebsabwehr nur funktioniert, wenn bestimmte Proteine, die Chaperone, dies zulassen.

Eine Krebstherapie ohne Nebenwirkungen, die gezielt nur Tumorzellen angreift – noch können Ärzte und Patienten davon nur träumen. Dabei hat die Natur ein...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Schub für ToCoTronics

23.05.2019 | Physik Astronomie

MiLiQuant: Quantentechnologie nutzbar machen

23.05.2019 | Physik Astronomie

Erfolgreiche Forschung zur Ausbreitung von Wellen

23.05.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics