Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vererbung mitochondrialer Krankheiten: neue Erkenntnisse aus der biologischen Grundlagenforschung

08.10.2012
Max-Planck-Forscher decken mit neuem Modellsystem Vererbungsprozesse auf: Ob mitochondriale Krankheiten vererbt werden, entscheidet sich weitgehend schon, wenn die künftige Mutter selbst noch ein Embryo ist.

Wenn die Mitochondrien nicht richtig funktionieren, kann das für die betreffende Person Stoffwechselstörungen bedeuten. Mutationen in der mitochondrialen DNA (mtDNA) können auch Muskelschwäche verursachen, neurodegenerative Erkrankungen, Herzprobleme und Diabetes.

Zudem werden sie mit dem Alterungsprozess in Verbindung gebracht. Aber wann und wie entscheidet sich, in welchem Maße potentiell krank machende Mutationen der mtDNA weitervererbt werden? Bisher gab es noch kein geeignetes Modellsystem, mit dem man diese Frage hätte beantworten können. Der Max-Planck-Wissenschaftler Christoph Freyer hat ein neues Modell entwickelt – und jetzt gemeinsam mit einem internationalen Forscherteam Antworten gefunden: Innerfamiliäre Unterschiede im Mutationsgrad von mitochondrialen Genen werden weitgehend schon vor der Geburt der Mutter selbst bestimmt.

Der genetische Bauplan von Lebewesen ist vor allem im Zellkern hinterlegt, in Form von DNA. Aber auch die Mitochondrien einer Zelle enthalten eigene Erbinformationen. Hier spricht man von der „mtDNA“. Da die Mitochondrien eine zentrale Rolle für die Energiegewinnung des Körpers spielen, können sich Mutationen in den Genen der mtDNA stark auf die Gesundheit auswirken. Und die entsprechenden Erkrankungen können über die mutierten Gene an die nächste Generation vererbt werden. Dabei wird die mtDNA ausschließlich von der Mutter weitergegeben.

Die Meinungen über das genaue „Wie und Wann?“ der Vererbung gesundheitsgefährdender mitochondrialer Mutationen gingen bislang jedoch auseinander, da die Vererbung von mtDNA nicht der klassischen Mendelschen Vererbung unterliegt, bei der je ein Satz Erbinformation von Vater und Mutter beigesteuert wird. Christoph Freyer, Wissenschaftler am Kölner Max-Planck-Institut für Biologie des Alterns und am Karolinska Institut in Stockholm, hat daher ein neues Mausmodell entwickelt: Die Hauptrolle spielt hier eine pathogene, also krank machende Mutation in einem mitochondrialen Gen namens „tRNA Methionin“. Mutationen in mitochondrialen tRNA Genen verursachen einen Großteil der bekannten mitochondrialen Krankheiten, obwohl tRNA Gene nur einen Bruchteil der mtDNA ausmachen. Diese Diskrepanz war bisher nicht ausreichend erklärt.

Freyer hat jetzt anhand der tRNA Methionin untersucht, wie sich in der Maus das Mischungsverhältnis zwischen mutierten und nicht mutierten Genen, der „Mutationsgrad“, in drei verschiedenen Phasen des Vererbungsprozesses darstellt: Zunächst hat er die Keimzellen von Mausembryonen analysiert und hier jeweils den Mutationsgrad bestimmt, der von Keimzelle zu Keimzelle variieren kann. Nach der Geburt der Maus hat er erneut die Mutationsgrade in den unreifen Eizellen untersucht. Später nahm er dann die Mutationsgrade in der mtDNA der Nachkommen unter die Lupe.

Diese Erkenntnisse der Grundlagenforschung decken einen Aspekt der mütterlichen Genetik auf, der den Weg für neue Möglichkeiten der genetischen Diagnose ebnen könnte

Freyers zentrale Erkenntnisse zeigen nun, dass die weibliche Keimbahn Mutationen in tRNA Genen nicht aussortiert, im Gegensatz zu Protein-kodierenden Genen, die nach dem aktuellen Wissensstand einer vorgeburtlichen Selektion unterliegen. Ob und in welchem Maße mutierte Gene dann an die nächste Generation weitergegeben werden können, entscheidet sich also großenteils schon, wenn die künftige Mutter selbst noch ein Embryo ist, während der Entwicklung ihrer Keimzellen. Wenn mutierte Gene in den Mitochondrien mit normalen Genen koexistieren, nennt man das „Heteroplasmie“. Das entsprechende Mischungsverhältnis kann von Eizelle zu Eizelle variieren. Der Mutationsgrad wird somit zufällig an die nächste Generation vererbt. So erklären sich auch die Unterschiede innerhalb einer Familie.

Mit diesen wissenschaftlichen Erkenntnissen haben die Forscher um Christoph Freyer einen Aspekt der mütterlichen Genetik aufgedeckt, der den Weg zu neuen Möglichkeiten der genetischen Diagnose ebnen könnte.

Und: Die Beobachtung, dass auch in diesem Modell die Mitochondrien der Maus versuchen, durch Mutationen bedingte Defekte zu kompensieren, eröffnet weitere Einblicke in den Vererbungsprozess mitochondrialer Krankheiten. „Vielleicht“, so Freyer, „könnte man diese Kompensation medikamentös anregen“. Der junge Wissenschaftler möchte sein Mausmodell künftig auch dazu nutzen, Therapien zu testen, die eine Vererbung von Mutationen der mtDNA verhindern könnten.

Originalarbeit:
Christoph Freyer, Lynsey M. Cree, Arnaud Mourier, James B. Stewart, Camilla Koolmeister, Dusanka Milenkovic, Timothy Wai, Erik Hagström, Emmanouella E. Chatzidaki, Rudolph Wiesner, David C. Samuels, Nils-Göran Larsson, Patrick F. Chinnery.
Variation in germ line mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission.
nature genetics November 2012 – Vol 44 No 11 (vorab online publiziert: 7. Oktober 2012)

Kontakt:
Dr. Christoph Freyer
Max-Planck-Institut für Biologie des Alterns, Köln
Mobil: +46 734 424959
E-Mail: christoph.freyer@age.mpg.de

Presse- und Öffentlichkeitsarbeit:
Sabine Dzuck
Tel.: +49 (0)221 478 89605
E-Mail: sabine.dzuck@age.mpg.de

Sabine Dzuck | Max-Planck-Institut
Weitere Informationen:
http://www.age.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt
29.01.2020 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstlicher Wirkstoff hemmt Coronaviren
29.01.2020 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

Chemie: Veröffentlichung in PNAS

Bestimmte Proteine dienen Pflanzen und auch Cyanobakterien als Lichtrezeptoren. Das Team des Center for Structural Studies (CSS) der Heinrich-Heine-Universität...

Im Focus: Protein pores packed in polymers make super-efficient filtration membranes

A multidisciplinary team of engineers and scientists has developed a new class of filtration membranes for a variety of applications, from water purification to small-molecule separations to contaminant-removal processes, that are faster to produce and higher performing than current technology. This could reduce energy consumption, operational costs and production time in industrial separations.

Led by Manish Kumar, associate professor in the Cockrell School of Engineering at The University of Texas at Austin, the research team describes their new...

Im Focus: Schnellster hochpräziser 3D-Drucker

3D-Drucker, die im Millimeterbereich und größer drucken, finden derzeit Eingang in die unterschiedlichsten industriellen Produktionsprozesse. Viele Anwendungen benötigen jedoch einen präzisen Druck im Mikrometermaßstab und eine deutlich höhere Druckgeschwindigkeit. Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) haben ein System entwickelt, mit dem sich in bisher noch nicht erreichter Geschwindigkeit hochpräzise, zentimetergroße Objekte mit submikrometergroßen Details drucken lassen. Dieses System präsentieren sie in einem Sonderband der Zeitschrift Advanced Functional Materials. (DOI: 10.1002/adfm.201907795).

Um nicht nur die Geschwindigkeit, sondern auch die Zuverlässigkeit ihres Aufbaus zu demonstrieren, haben die Forscherinnen und Forscher eine 60 Kubikmillimeter...

Im Focus: Wie man ein Bild von einem Lichtpuls macht

Um die Form von Lichtpulsen zu messen, brauchte man bisher komplizierte Messanlagen. Ein Team von MPI Garching, LMU München und TU Wien schafft das nun viel einfacher.

Mit modernen Lasern lassen sich heute extrem kurze Lichtpulse erzeugen, mit denen man dann Materialien untersuchen oder sogar medizinische Diagnosen erstellen...

Im Focus: Ein ultraschnelles Mikroskop für die Quantenwelt

Was in winzigen elektronischen Bauteilen oder in Molekülen geschieht, lässt sich nun auf einige 100 Attosekunden und ein Atom genau filmen

Wie Bauteile für künftige Computer arbeiten, lässt sich jetzt gewissermaßen in HD-Qualität filmen. Manish Garg und Klaus Kern, die am Max-Planck-Institut für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

HDT-Tagung: Sensortechnologien im Automobil

24.01.2020 | Veranstaltungen

Tagung befasst sich mit der Zukunft der Mobilität

22.01.2020 | Veranstaltungen

ENERGIE – Wende. Wandel. Wissen.

22.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Intelligentes Robotersystem an der TU Bergakademie Freiberg verbessert Trinkwasserkontrolle in Binnengewässern

29.01.2020 | Informationstechnologie

Struktur und Funktion von Lichtrezeptor bei Cyanobakterien aufgeklärt

29.01.2020 | Biowissenschaften Chemie

Unerwartetes Materialverhalten: Vom 2D-Kristall zum 1D-Draht

29.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics