Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Veränderte Proteine messen

15.09.2014

ETH-Forschende haben einen neuen Ansatz entwickelt, um Eiweisse zu messen, deren Struktur sich verändert. Damit könnten neue diagnostische Werkzeuge für die Früherkennung neurodegenerativer Krankheiten entwickelt werden.

Zellen regulieren die Funktion von Proteinen (Eiweissen) auf verschiedenste Weise, unter anderem durch die Veränderung der Proteinstruktur. Wie durch ein Fingerschnippen kann ein Eiweiss in eine andere Form übergehen und dadurch andere, keine oder allenfalls sogar «falsche» Funktionen ausüben:

Beim Menschen können Proteine, die sich falsch falten, die Ursache von schweren Erkrankungen wie Alzheimer, Parkinson oder Cystischer Fibrose sein. Manche dieser Proteine haben auch die Tendenz, weitere «Artgenossen» anzustecken und sich zu unauflöslichen sogenannten Amyloid-Fibrillen oder -Plaques zusammenzulagern. Diese Amyloide können Zellen und Gewebe schädigen und krank machen.

Bisherige Grenzen überwunden

Methoden, um strukturell veränderte Proteine in komplexen biologischen Proben quantitativ erfassen zu können, gab es bis anhin nicht. Zwar bestehen eine Reihe von Techniken um strukturveränderte Proteine zu untersuchen, etwa die Röntgenkristallographie, die Kernresonanzspektroskopie und weitere spektroskopische Techniken. Doch mit diesen Verfahren lassen sich komplexe biologische Proben nicht analysieren. Auch andere Methoden, mit denen Forscher Strukturveränderungen von Proteinen in Zellen untersuchen, haben Grenzen: Die fraglichen Eiweisse müssen vor der Analyse speziell markiert werden, damit die Wissenschaftler sie in Proben beobachten können. Dieses Vorgehen ist allerdings nur für wenige Proteine einer Probe möglich.

Nun hat das Team von Paola Picotti, Professorin für die Biologie von Proteinnetzwerken der ETH Zürich, einen Weg gefunden, den Grossteil der strukturell veränderten Proteine in einer beliebigen biologischen Probe zu messen. Diese Probe kann Tausende verschiedener Eiweisse enthalten. Picotti und ihre Mitarbeiter haben es geschafft, die Mengen von strukturveränderten Proteinen direkt aus einem komplexen Proteingemisch, wie es in Zellen vorkommt, zu messen. Dazu mussten sie die Proben weder reinigen noch anreichern.

Kombination mehrerer Verfahren

Für ihr neues Verfahren kombinierten die Forschenden eine «alte» Technik und einen modernen Ansatz der Proteomforschung. Erst werden den Proben alt bekannte Verdauungsenzyme wie die Proteinase K hinzugefügt, welche die Proteine strukturabhängig in sogenannte Peptide zerschneiden. Die Bruchstücke können anschliessend mit einem Verfahren gemessenen werden, das Paola Picotti während ihrer Postdoc-Zeit an der ETH massgeblich mitentwickelt hat. Diese als Selected Reaction Monitoring (SRM) benannte Methode erlaubt es, gezielt nach vielen verschiedenen Peptiden zu suchen und deren Mengen zu messen. Anhand der gefundenen Peptide lassen sich Proteine, die in der Probe ursprünglich vorhanden waren, bestimmen und quantifizieren.

Der Clou an der Sache ist, dass die Verdauungsenzyme gleichartige Proteine, die unterschiedlich gefaltet sind, an verschiedenen Stellen zerschneiden. Dadurch entstehen unterschiedliche Bruchstücke, die sich wie ein Fingerabdruck eindeutig den jeweiligen Strukturen dieses Proteins zuordnen lassen.

«Damit können wir die Methode gezielt für die Analyse von strukturellen Veränderungen von spezifischen Proteinen oder ganzen Eiweissnetzwerken einsetzen. Sie erlaubt uns, zahlreiche Proteine gleichzeitig zu erfassen», sagt Picotti.

Bei parkinsonverursachenden Protein funktioniert‘s

Auf der Basis ihrer neuen Methode entwickelten die Forschenden einen Test, um spezifisch die «gesunde» und die «kranke» Version des Proteins Alpha-Synuclein in komplexen ungereinigten Proben wie z.B. Blut oder Rückenmarksflüssigkeit zu messen. Alpha-Synuclein gilt als Verursacher von Parkinson. Dieses Protein kann seine Struktur verändern. Die krankmachende Strukturvariante lagert sich mit ihresgleichen zu Amyloid-Fibrillen zusammen, welche Nervenzellen schädigen. 

Mithilfe des Tests gelang es den Wissenschaftlern, die Mengen von krankmachendem und nicht-krankmachendem Alpha-Synuclein direkt in der Probe exakt zu messen. Der Test liefert auch Informationen über den Aufbau des Proteins. «Er zeigt uns, welche Abschnitte des Proteins sich verändern und zur neuen krankmachenden Struktur werden», sagt Paola Picotti.

Steigende Zahl von Amyloidosen

Noch könne aber Alpha-Synuclein nicht als Biomarker verwendet werden. Die Menge des Proteins sei im Blut oder in Rückenmarksflüssigkeit bei Gesunden und Parkinsonerkrankten immer etwa gleich gross. «Es könnte jedoch sein, dass sich das Verhältnis der pathogenen zur apathogenen Alpha-Synucleinstuktur über die Zeit verändert», vermutet die ETH-Professorin.

«Weil wir mit der neuen Methode diese beiden Alpha-Synucleinstukturen in einer Vielzahl von Proben messen können, kann dies vielleicht künftig zur Entwicklung neuer Biomarker für diese Krankheit genutzt werden», hofft sie. Mit der Methode sei es überdies möglich, ohne Vorwissen weitere bisher unbekannte Amyloid-bildende Proteine, die in Zusammenhang mit Krankheiten stehen könnten, zu entdecken.

Beide Anwendungen – die Quantifizierung eines spezifischen, bereits bekannten Proteins von veränderter Struktur und das Auffinden neuer Proteine mit abweichenden Strukturen – seien medizinisch hoch relevant, führt Picotti weiter aus. «Die Anzahl von Amyloidosen, also Erkrankungen, die aufgrund der Veränderung von Proteinstrukturen entstehen, steigt jedes Jahr an.»

Literaturhinweis

Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema P, Polverino de Laureto P, Nikolaev Y, Oliveira AP, Picotti P. Global analysis of protein structural changes in complex proteomes. Nature Biotechnology, published online 14th Sept 2014, DOI: 10.1038/nbt.2999

Weitere Informationen:

https://www.ethz.ch

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Coronaviren zum Anfassen
31.07.2020 | Rudolf-Virchow-Zentrum – Center for Integrative and Translational Bioimaging

nachricht Was wir von Überlebenskünstlern lernen können
31.07.2020 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit dem Lego-Prinzip gegen das Virus

HZDR-Wissenschaftler*innen erhalten millionenschwere Förderung für Corona-Forschung

Um die Corona-Pandemie zu bewältigen, stattet der Freistaat Sachsen ein Forschungsteam um Prof. Michael Bachmann vom Helmholtz-Zentrum Dresden-Rossendorf...

Im Focus: Im Einsatz für eine Welt ohne Narben

Hinter jeder Narbe steht eine Geschichte. Manchmal ist diese mit einer dramatischen Erfahrung verbunden: schwere Verletzungen, Operationen oder chronische Erkrankungen. Wenn es nach Dr. Yuval Rinkevich ginge, würden wir anstelle von Narben vielmehr über Regeneration sprechen, also der spurenlosen Wundheilung. Damit dies eines Tages Wirklichkeit wird, untersucht Rinkevich mit seinem Team am Helmholtz Zentrum München jeden einzelnen Aspekt der Wundheilung von Säugetieren, beginnend beim Embryo bis hin zum hohen Erwachsenenalter. Yuval Rinkevich erklärt, wie er sich eine Welt ohne Narben vorstellt.

Narben gehören zum natürlichen Wundheilunsgprozess des Körpers nach einer Verletzung. Warum wollen wir sie vermeiden?

Im Focus: TU Graz Forschende modellieren Nanopartikel nach Maß

Sogenannte Core-Shell-Cluster ebnen den Weg für neue effiziente Nanomaterialien, die Katalysatoren, Magnet- und Lasersensoren oder Messgeräte zum Aufspüren von elektromagnetischer Strahlung effizienter machen.

Ob bei innovativen Baustoffen, leistungsfähigeren Computerchips, bei Medikamenten oder im Bereich erneuerbarer Energien: Nanopartikel als kleinste Bausteine...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Maßgeschneidertes Licht durch Vorbilder aus der Natur

Einem internationalen Forschungsteam mit Prof. Dr. Cornelia Denz vom Institut für Angewandte Physik der Westfälischen Wilhelms-Universität Münster ist es erstmals gelungen, Lichtfelder durch Brennlinien zu entwickeln, die sich nicht verändern. Mit der neuen Methode nutzen die Physikerin und Physiker Lichtstrukturen aus, die in Regenbögen oder bei der Transmission von Licht durch Trinkgläser zu sehen sind.

Moderne Anwendungen wie die hochauflösende Mikroskopie oder die mikro- und nanoskalige Materialbearbeitung benötigen maßgeschneiderte Laserstrahlen, die sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

»Conference on Laser Polishing – LaP 2020«: Der letzte Schliff für Oberflächen

23.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue effektive Behandlungsform bei akuter Leukämie

31.07.2020 | Medizin Gesundheit

Coronaviren zum Anfassen

31.07.2020 | Biowissenschaften Chemie

Fraunhofer UMSICHT prüft erweitertes Bewertungstool von Henkel für kreislauffähige Verpackungen

31.07.2020 | Ökologie Umwelt- Naturschutz

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics