Ursache von "Erschöpfungszustand" von Immunzellen gefunden

Prof. Dietmar Zehn (rechts) mit der Erstautorin der aktuellen Studie zu chronischen Immunantworten, Francesca Alfei, und seinem Mitarbeiter Markus Flosbach. D. Zehn / Technische Universität München

Bei einer Virusinfektion gerät das Immunsystem in maximale Alarmbereitschaft. Unterschiedliche Immunzellen, wie T- oder B-Zellen, werden aktiv, vermehren sich stark und kämpfen aggressiv gegen infizierte Zellen.

Schafft es das Immunsystem jedoch nicht, die Viren zu beseitigen, treten typischerweise Immunzellen auf, die stark eingeschränkte Funktionen haben. Diese „Erschöpfung“ der Immunzellen wird durch die dauerhafte Aktivierung durch die Viren ausgelöst.

Für den Körper ist das auch gut, weil dauerhaft starke Immunantworten zu einer große Belastung für Zellen und Gewebe werden. Tumore dagegen können durch das Abschalten von Immunantworten massiv weiterwachsen.

Auf der Suche nach dem Mechanismus

Erklärtes Ziel in der Tumor- und Infektionsforschung ist es daher diese Abschaltung kontrolliert zu überwinden oder zu verhindern. Dietmar Zehn, Professor für Tierphysiologie und Immunologie am Wissenschaftszentrum Weihenstephan der TUM, interessiert sich seit Jahren für solche chronischen Immunantworten und die zugrundeliegenden molekularen Abschaltmechanismen.

„Diese funktional reduzierten Immunantworten sind ein Kompromiss des Körpers zwischen den Schäden, die eine andauernd starke Immunreaktion verursachen würde und der eigentlichen Krankheit.

Für uns sind diese Antworten aus mehreren Gründen spannend: sie treten neben chronischen Infektionen auch bei Tumoren auf und der Nobelpreis für Medizin 2018 wurde für die Erkenntnis vergeben, das ein Überwinden dieser reduzierten Funktionszustände zu starken Immunantworten gegen Tumore führt.

Trotzdem blieben die zugrunde liegenden Mechanismen bisher noch wenig verstanden“, erklärt er die Bedeutung des Gebiets. „Vor allem die Übertragung unserer Ergebnisse in die Klinik bei chronischen Hepatitis C Infektionen durch Kolleginnen und Kollegen des Universitätsklinikums Freiburg unterstreicht die medizinische Relevanz der gemachten Beobachtungen.“

Protein Tox schaltet „Erschöpfungszustand“ an

Bis jetzt war es nicht bekannt, wie der Körper diese reduzierten Immunantworten anschaltet und reguliert. Zehn und sein Team fanden nun, zeitgleich mit zwei Gruppen aus den USA, den entscheidenden Faktor. Die Studie wurde im Fachjournal Nature veröffentlicht.

Das Protein Tox ist der wichtige molekulare Schalter. Mit Hilfe von Maus- und Zellkulturmodellen, sowie Patientenproben fanden die Wissenschaftlerinnen und Wissenschaftler heraus, dass es im Zellkern wirkt. Es schaltet dort ein genetisches Programm an.

Das führt dazu, dass auf der Zelloberfläche der Immunzellen negative regulierenden Rezeptoren auftreten. Sie werden dadurch empfänglich für hemmende Signale und sorgen dafür, dass die Zelle „ermüdet“, weniger effektiv arbeitet oder sogar abstirbt.

Nutzbar für unterschiedliche Therapien

„Es ist unglaublich wichtig, dass wir diese molekularen Abläufe nun endlich entschlüsselt haben. Nur so lassen sie sich auch gezielt therapeutisch verändern. Über eine Kontrolle von Tox könnten sich überschießende Immunreaktionen wie in Autoimmunerkrankungen bremsen oder schwache Immunreaktionen wieder aktivieren lassen, was zum Beispiel bei der Tumorbekämpfung interessant wäre“, sagt Dietmar Zehn.

Prof. Dr. Dietmar Zehn
Lehrstuhl für Tierphysiologie und Immunologie
Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt
Technische Universität München
Tel.: +49 89 289 23325 (Pressestelle TUM)
dietmar.zehn@tum.de

Francesca Alfei, Kristiyan Kanev, Maike Hofmann, Ming Wu, Hazem E. Ghoneim, Patrick Roelli, Daniel T. Utzschneider, Madlaina von Hösslin, Jolie G. Cullen, Yiping Fan, Vasyl Eisenberg, Dirk Wohlleber, Katja Steiger, Doron Merkler, Mauro Delorenzi, Percy A. Knolle, Cyrille J. Cohen, Robert Thimme, Benjamin Youngblood, and Dietmar Zehn: Tox reinforces the phenotype and longevity of exhausted T-cells in chronic viral infection, Nature, June 17, 2019, DOI: 10.1038/s41586-019-1326-9
https://www.nature.com/articles/s41586-019-1326-9

https://mediatum.ub.tum.de/1506580 – Hochauflösendes Bild für die redaktionelle Berichterstattung

http://physio.wzw.tum.de/home/ – Webseite des Lehrstuhls für Tierphysiologie und Immunologie

http://www.professoren.tum.de/zehn-dietmar/ – Profil von Prof. Dietmar Zehn

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35494/ – Dieser Text im Web

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer