Uralte Symbiose zwischen Tieren und Bakterien entdeckt

Plattwurm aus dem Belize Barriere Riff in der West-Karibik. Die symbiotischen Bakterien erscheinen schwarz im hinteren Bereich des ca. 6 mm langen Wurms. (Copyright: Harald Gruber-Vodicka)<br>

Neben Bakterien und Einzellern halten sich vielfältige Tierstämme dort auf. Einer der seltsamsten Vertreter dieser Sandlückenfauna ist Paracatenula, ein wenige Millimeter langer, mund- und darmloser Plattwurm, der sowohl in tropischen Meeren als auch im Mittelmeer vorkommt.

Er ist das zentrale Forschungsobjekt eines vom FWF geförderten Projekts unter der Leitung von Jörg Ott, Professor am Department für Meeresbiologie der Universität Wien. Aktuell erscheint dazu eine Publikation im Fachmagazin PNAS.

Schon bei der Entdeckung von Paracatenula in den frühen 1970er Jahren war es ein Rätsel, wie sie sich ohne Mund und Darm ernähren können. Die Idee zur Erklärung kam dann aus einer überraschenden Ecke: Bei heißen Quellen in der Tiefsee hatte man ebenfalls Mund lose, jedoch über einen Meter große Riesenröhrenwürmer entdeckt. Diese leben – wie Paracatenula – auch in einer Symbiose mit intrazellulären Bakterien, die Schwefelverbindungen oxidieren. Die daraus gewonnene Energie verwenden die Symbionten, also die kleineren Partner der Symbiose, um – so wie Pflanzen mit dem Sonnenlicht – anorganischen Kohlenstoff zu Biomasse aufzubauen. Durch die hohe Produktivität der Symbionten können sich ihre Wirte komplett von ihnen ernähren.

In den letzten Jahren hat man bei Vertretern verschiedener Tiergruppen in vielen anderen Lebensräumen Symbiosen dieser Art gefunden. Während allerdings die Diversität der beschriebenen Wirte stetig zunahm, war die Diversität der Symbionten bisher auf zwei Klassen, die Gamma- und Epsilon-Proteobakterien, beschränkt.

Paracatenula hat das Alpha-Proteobakterium „Riegeria“ als Partner

Eine der großen Überraschungen bei den Forschungsarbeiten war, dass die Symbionten von Paracatenula zwar Schwefeloxidierer sind, jedoch zu den Alpha-Proteobakterien gehören. In diese Klasse fallen andere wichtige intrazelluläre Symbionten, allen voran die Mitochondrien, die als Kraftwerke aus den Zellen aller höheren Lebewesen nicht wegzudenken sind. Auch die Stickstoff fixierenden Knöllchenbakterien der Leguminosen, aber auch gefährliche Krankheitserreger wie die Erreger des Fleckfiebers gehören in diese Klasse. Studien der letzten Jahre zeigten immer deutlicher, dass die Mechanismen in symbiotischen und pathogenen Beziehungen ähnlich oder sogar identisch sind. Hier könnten sich bei zukünftigen Projekten mit Paracatenula und ihren Riegeria genannten Symbionten grundlegende Einsichten ergeben, welche Mechanismen es Alpha-Proteobakterien mehrfach erlaubt haben, eine intrazelluläre Lebensweise zu etablieren.

Ein weiteres faszinierendes Detail an der Paracatenula-Riegeria-Symbiose ist, dass die Symbionten, die in spezialisierten Zellen, den Bakteriozyten, leben, bis zu 50 Prozent des Gesamtgewebes ausmachen. Das ist deutlich mehr als in allen anderen bekannten Symbiosen zwischen Tieren und Bakterien.

500 Millionen Jahre alte Partnerschaft

Mit aus Gensequenzen der Symbionten abgeleiteten Bakterienstammbäumen führten die ForscherInnen eine grobe Altersbestimmung der Symbiose durch. Erstaunliches Ergebnis: Die beiden Partner sind schon seit geschätzten 500 Millionen Jahren miteinander unterwegs, länger als jede andere bekannte Symbiose zwischen Tieren und Bakterien.

Der Vergleich der Bakterienstammbäume mit den Wurmstammbäumen brachte noch eine zusätzliche Finesse ans Tageslicht – die Würmer geben seit Urzeiten ihre Symbionten an ihre Nachkommen weiter, ohne jemals den Symbionten gewechselt zu haben. Wie diese Weitergabe funktioniert, wird momentan in der Arbeitsgruppe des Meeresbiologen Jörg Ott untersucht.

Publikation
Paracatenula, an ancient symbiosis between thiotrophic Alphaproteobacteria and catenulid flatworms: Harald Ronald Gruber-Vodicka, Ulrich Dirks, Nikolaus Leisch, Christian Baranyi, Kilian Stoecker, Silvia Bulgheresi, Niels Robert Heindl, Matthias Horn, Christian Lott, Alexander Loy, Michael Wagner, and Jörg Ott. In: Proceedings of the National Academy of Sciences (PNAS). June 27, 2011.

Die Publikation wird im Laufe des 27. Juni 2011 online gestellt.

Wissenschaftlicher Kontakt
Mag. Harald Gruber-Vodicka
(PhD Student)
Department für Meeresbiologie
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-571 04
M +43-699-171 219 09
harald.gruber@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer