Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterwegs auf dem molekularen Highway

05.07.2018

Forschungsteam rekonstruiert Antriebs-Proteine in Zilien

Kaum jemand kennt sie, und doch brauchen alle Lebewesen sie zum Überleben: Zilien, Ausstülpungen von Zellen. Dem Spermium erlauben sie die Fortbewegung, als Flimmerhärchen schützen sie die Lunge und im Embryo sind sie entscheidend an der Differenzierung der Organe beteiligt.


Motorproteine (grün) bewegen sich entlang der Mikrotubuli (rot) wie auf Straßen. Fuoreszenzmikroskopische Aufnahme

Bild: Georg Merck / TUM


Dr. Zeynep Ökten und Mitautor Willi L. Stepp am Fluoreszenzmikroskop.

Bild: A. Battenberg / TUM

Ein Forschungsteam der Technischen Universität München (TUM) konnte jetzt einen Protein-Komplex nachbauen, der für den Transport innerhalb der Zilien verantwortlich ist und damit einen entscheidenden Einfluss auf das Funktionieren der Zilien hat.

Geißeltierchen brauchen sie, um sich fortzubewegen, Fadenwürmer um Futter zu finden, Spermien, um eine Eizelle anzusteuern: Zilien. Die Ausstülpungen eukaryonter Zellen sind sogar dafür verantwortlich, dass der Mensch das Herz am rechten Fleck hat – während sich der Fötus entwickelt, steuern die Zilien die Anlage der Organe.

„Diese Multifunktionalität ist absolut faszinierend“, sagt Dr. Zeynep Ökten, Biophysikerin am Physik-Department der Technischen Universität München (TUM).

Die Bedeutung der Zilien sowohl für die Signalübertragung als auch für die Bewegung von Zellen wurde erst in den letzten Jahren erkannt. „Bis heute wissen wir nur sehr wenig darüber, welche biochemischen Prozesse die verschiedenen Funktionen steuern. Umso wichtiger ist es, die grundlegenden Mechanismen zu verstehen“, betont die Wissenschaftlerin.

Grüne Punkte im Visier

Die Wissenschaftlerin hält ein Glasplättchen mit dünnen, flüssigkeitsgefüllten Kapillaren ans Licht. Zu sehen ist nichts – die Flüssigkeit ist transparent und klar. Erst unterm Fluoreszenz-Mikroskop erkennt man die Bewegung der mit grünem Farbstoff markierten Verbindungen: Rote Punkte streben in eine Richtung.

Wie auf einer Straße wandern die Transport-Proteine auch durch die dünnen Kanäle der Zilien. Doch wie diese Motoren gestartet werden, war bisher nicht bekannt. Zusammen mit ihrem Team hat Zeynep Oekten daher den Protein-Komplex rekonstruiert.

Bottom-up statt top-down

Die Bausteine des Protein-Komplexes stammen aus dem Modellorganismus des Fadenwurms Caenorhabditis elegans. Der findet mit Hilfe seiner Zilien Futter und wittert Gefahren. Die Biologen haben bereits Dutzende von Proteinen identifiziert, welche die Funktion der Zilien des Fadenwurms beeinflussen.

„Der klassische Top-down-Ansatz stößt hier an seine Grenzen, weil zu viele Bausteine beteiligt sind“, erklärt Ökten. „Um den Intra-Flagellaren Transport, kurz IFT, zu verstehen, sind wir daher den umgekehrten Weg gegangen und haben, Bottom-up, einzelne Proteine und ihre Wechselwirkungen untersucht.

Nadel im Protein-Heuhaufen

Die Arbeit glich der sprichwörtlichen Suche nach der Nadel im Heuhaufen. Es gab eine Vielzahl von Molekülverbindungen, die in Frage kamen. Nach monatelangem Experimentieren stießen die Forscher auf eine Minimalkombination aus vier Proteinen. Sobald sich diese Proteine zu einem Komplex zusammenschließen, beginnen sie durch die Kapillaren des Probenträgers zu wandern.

„Als wir die Aufnahmen des Fluoreszenz-Mikroskops sahen, wussten wir: Jetzt haben wir die Puzzlesteine gefunden, die den Motor starten“, erinnert sich Ökten. „Steht auch nur eine Komponente, beispielsweise aufgrund eines genetischen Defekts, nicht zur Verfügung, so versagt die Maschinerie – was sich aufgrund der Wichtigkeit der Zilien in einer langen Liste schwerer Krankheiten wiederspiegelt.“


Publikation:

Mohamed A. A. Mohamed, Willi L. Stepp and Zeynep Ökten
Reconstitution reveals motor activation for intraflagellar transport
Nature, vol. 557, p 387–391 (2018) – DOI: 10.1038/s41586-018-0105-3
https://www.nature.com/articles/s41586-018-0105-3


Weitere Informationen:

Die Arbeiten wurden unterstützt mit Mitteln des European Research Councils und der Deutschen Forschungsgemeinschaft (DFG) im Rahmen des Exzellenzclusters Munich Center for Integrated Protein Science (CIPSM).

Website der Arbeitsgruppe: http://bio.ph.tum.de/home/dr-oekten/oekten-home.html

Bildmaterial mit hoher Auflösung: https://mediatum.ub.tum.de/1447270


Kontakt:

Dr. Zeynep Ökten
Physik-Department, E22
Technische Universität München
James-Franck-Str. 1, 85748 Garching
Tel.: +49 89 289 12885
E-Mail: zoekten@ph.tum.de

Die Technische Universität München (TUM) ist mit rund 550 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 41.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. www.tum.de

Dr. Andreas Battenberg | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mittelhäufige Pflanzenarten sind am stärksten zurückgegangen
19.09.2019 | Universität Rostock

nachricht Nervenzellen feuern Hirntumorzellen zum Wachstum an
19.09.2019 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modulare OLED-Leuchtstreifen

Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP, ein Anbieter von Forschung und Entwicklungsdienstleistungen auf dem Gebiet der organischen Elektronik, stellt auf dem International Symposium on Automotive Lighting 2019 (ISAL), vom 23. bis 25. September 2019, in Darmstadt, am Stand Nr. 37 erstmals OLED-Leuchtstreifen beliebiger Länge mit Zusatzfunktionalitäten vor.

Leuchtstreifen für das Innenraumdesign kennt inzwischen nahezu jeder. LED-Streifen sind als Meterware im Baumarkt um die Ecke erhältlich und ebenso oft als...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Woher kommt der Nordsee-Plastikmüll

18.09.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - November 2019

18.09.2019 | Veranstaltungen

Sichere Schnittstellen: API-Security

18.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher entwickeln "Landkarte" für Krebswachstum

19.09.2019 | Medizin Gesundheit

Nervenzellen feuern Hirntumorzellen zum Wachstum an

19.09.2019 | Biowissenschaften Chemie

Räume voller Möglichkeiten für Innovationen

19.09.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics