Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unterschiedliche Gewebe einfach ausdrucken

01.10.2013
Was sich wie Zukunftsmusik anhört, wird bereits seit einigen Jahren erforscht: Gewebe und Organe einfach auszudrucken.

Jetzt haben Wissenschaftler die Technologie weiter verfeinert und sind in der Lage unterschiedliche Gewebe zu produzieren.


Labor statt Büro: Forscher drucken mit Hilfe von Tintenstrahldruckern Zellsuspensionen auf rosa schimmernde Hydrogel-Pads, die das Austrocknen verhindern. © Fraunhofer IGB

Die jüngsten Skandale haben das Problem noch verschlimmert: Laut der Deutschen Stiftung für Organtransplantation (DSO) ging die Zahl der Organspender im ersten Halbjahr 2013 um über 18 Prozent im Vergleich zum Vorjahreszeitraum zurück. Gleichzeitig darf man davon ausgehen, dass die Nachfrage in den nächsten Jahren kontinuierlich steigt:

Denn wir werden immer älter und die Transplantationsmedizin macht immer mehr Fortschritte. Indem man Zellen, Gewebe oder Organe ersetzt, können schon heute viele schwerwiegende Krankheiten geheilt werden. Politik, Industrie und Forschung arbeiten deshalb schon seit geraumer Zeit intensiv daran, Methoden und Verfahren zu verbessern, mit deren Hilfe sich Gewebe künstlich herstellen lassen. So soll die Versorgungslücke geschlossen werden.

Biotinte aus lebenden Zellen

Dabei könnte eine Technologie eine entscheidende Rolle übernehmen, die wir alle aus dem Büro kennen und die meisten von uns zunächst wohl nicht mit der Produktion künstlicher Organe in Verbindung bringen: der Tintenstrahldruck. Wissenschaftlern des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB aus Stuttgart ist es gelungen, für diese Drucktechnik geeignete Biotinten zu entwickeln. Die durchsichtigen Flüssigkeiten bestehen aus tierischem Material und lebenden Zellen. Die Basis bildet eine Substanz, die aus natürlichen Geweben gewonnen wird: Gelatine. Sie ist ein Abbauprodukt der Kollagene, die den Hauptbestandteil der Matrix natürlicher Gewebe bilden. Um die Biomoleküle fit für den Druck zu machen, haben die Forscher deren Gelierverhalten chemisch angepasst. Während des Drucks bleiben die Biotinten flüssig und somit druckbar. Werden sie danach mit UV-Licht bestrahlt, vernetzen sie zu Hydrogelen. Das sind Polymere, die Wasser enthalten, sich aber weder unter Wärmeeinfluss noch in Wasser auflösen. Die chemische Modifizierung der Biomoleküle können die Forscher so steuern, dass die resultierenden Gele unterschiedliche Festigkeiten und Quellbarkeiten besitzen. Damit lassen sich die Eigenschaften von natürlichen Geweben nachbilden – von festem Knorpel- bis hin zu weichem Fettgewebe.

Auch aus künstlichen Ausgangsmaterialien lassen sich mit den Druckern der Stuttgarter Forscher Gele produzieren, die als Ersatz für die extrazelluläre Matrix dienen können. Zum Beispiel haben sie ein System entwickelt, das ohne die Ausbildung von Nebenprodukten zu einem Hydrogel vernetzt und direkt mit echten Zellen besiedelt werden kann. »Aktuell konzentrieren wir uns aber auf die ›natürliche‹ Variante. Wir bleiben damit sehr nah am Original. Auch wenn das Potenzial von künstlich hergestellten Biotinten groß ist, müssen wir erst noch einiges über die Wechselwirkungen zwischen den Kunststoffen und dem natürlichen Gewebematerial lernen. Unsere Variante dagegen gibt den Zellen ihre natürliche Umgebung und kann so direkt die Selbstorganisation der gedruckten Zellen zu einem funktionalen Gewebemodell fördern«, schildert Dr. Kirsten Borchers den Ansatz am IGB.

Die Drucker in den Stuttgarter Laboren haben viel gemeinsam mit herkömmlichen Bürodruckern: Tintenreservoir, Düsen – alles wie gehabt. Erst beim genaueren Hinsehen entdeckt man die Unterschiede. Zum Beispiel die kleine Heizung am Tintenbehälter, mit der die passende Temperatur der Biotinte eingestellt wird. Auch die Anzahl der Düsen und der Tanks ist noch geringer als beim Büro-Pendant. »Zusammen mit anderen Fraunhofer-Instituten und der Industrie wollen wir deren Zahl erhöhen, um gleichzeitig verschiedene Tinten mit unterschiedlichen Zellen und Matrices auszudrucken. So nähern wir uns der Herstellung komplexerer Strukturen und unterschiedlicher Gewebe«, erklärt Borchers.

Die größte Herausforderung ist es derzeit, vaskularisiertes Gewebe zu produzieren. Dabei handelt es sich um Gewebe, das über ein eigenes Blutgefäßsystem verfügt und darüber mit Nährstoffen versorgt werden kann. Daran arbeitet das IGB zusammen mit anderen Partnern in dem von der Europäischen Union geförderten Projekt »ArtiVasc 3D«. Im Mittelpunkt steht hier eine Technologie, mit der es möglich ist, feine Blutgefäßmodelle aus synthetischen Materialien zu produzieren und damit erstmals künstliche Haut mit dem darunterliegenden Fettgewebe zu erzeugen. »Um zukünftig ganze Organe drucken zu können, ist dieser Schritt sehr wichtig. Erst wenn es uns gelingt, Gewebe zu produzieren, die durch ein Blutgefäßsystem versorgt werden können, ist der Druck von größeren Gewebestrukturen möglich«, schließt Borchers. Sie zeigt die IGB-Technologie auf der »Biotechnica« von 8. bis 10. Oktober 2013 in Hannover (Halle 9, Stand E09).

Dr. rer. nat. Kirsten Borchers | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2013/Oktober/unterschiedliche-gewebe-einfach-ausdrucken-2.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics