Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unter Druck: Wissenschaftler entwickeln hochempfindlichen molekularen optischen Drucksensor

04.07.2018

Druckmessung im Festkörper und in Lösung: Molekularer Rubin für Anwendungen in den Materialwissenschaften und in der Katalyse

Chemiker der Johannes Gutenberg-Universität Mainz (JGU) und der Universität Montreal (Kanada) haben ein molekulares System entwickelt, das sehr genaue optische Druckmessungen ermöglicht. Als Inspiration dafür diente der Edelstein Rubin.


Molekularer Rubin in fester (rot) und gelöster (gelb) Form kann berührungsfrei den Druck messen.

Foto/©: Sven Otto, JGU

Allerdings handelt es sich bei dem Material, das in der Gruppe von Prof. Dr. Katja Heinze am Institut für Anorganische Chemie und Analytische Chemie entwickelt wurde, um ein wasserlösliches Molekül und nicht um einen unlöslichen Feststoff wie der bekannte Edelstein. Dieses Molekül enthält aber wie Rubin das Element Chrom, das ihm die rote Farbe verleiht, und es wird daher auch molekularer Rubin genannt.

Der molekulare Rubin kann wie der Rubin selbst im Festkörper Druck messen, aber darüber hinaus dank seiner Löslichkeit auch in Lösungen. Somit eröffnet dieses molekulare System Anwendungsmöglichkeiten in der Materialwissenschaft, der homogenen und heterogenen Katalyse und in allen Feldern, wo Druckänderungen überwacht werden müssen.

Der Vorgang der Druckmessung mit dem molekularen Rubin ist denkbar einfach. Die betreffende Stelle wird mit blauem Licht bestrahlt, der molekulare Rubin absorbiert dieses Licht und sendet daraufhin Infrarotstrahlung aus. Je nach Druck ändert sich die Energie des ausgesendeten Lichts in empfindlicher Weise. Anhand dieser Energie kann der vorherrschende Druck abgelesen werden.

Die anspruchsvollen Druckexperimente bis zu 45.000 bar hat Sven Otto, Doktorand aus der Arbeitsgruppe Heinze, in den Laboren der Gruppe von Prof. Dr. Christian Reber an der Universität Montreal durchgeführt. Der Forschungsaufenthalt von Sven Otto war von der Exzellenz-Graduiertenschule Materials Science in Mainz (MAINZ) finanziert worden.

„Die experimentellen Untersuchungen in Montreal waren eine großartige Erfahrung und der schlussendliche Erfolg der Experimente einfach fantastisch“, schwärmt Sven Otto. „Die höchsten Drücke, die wir in einer sogenannten Diamantstempelzelle gemessen haben, sind etwa 45 Mal höher als der Druck an der tiefsten Stelle des Ozeans“, erläutert Otto.

„Die sehr großen Effekte, die wir erzielt haben, sind überwältigend“, ergänzt Professor Christian Reber, ein Experte der Lumineszenzspektroskopie bei hohen Drücken und derzeit ein vom DAAD geförderter Gastwissenschaftler an der JGU. Tatsächlich sind die Effekte bis zu 20 Mal stärker als die des Edelsteins Rubin.

Chance auf völlig neue Anwendungen eröffnet

Das Prinzip der optischen Druckmessung mit Chromverbindungen war bereits zuvor bekannt. Jedoch sind alle diese Verbindungen, wie der Rubin selbst, unlöslich. Somit waren optische Druckmessungen in einer Lösung mit einer einzigen Art von gelösten Molekülen bislang nicht möglich. „Unser molekular Rubin jedoch beherrscht dieses Kunststück“, sagt Professorin Katja Heinze.

„Wir hoffen, dass unsere Erkenntnisse den Weg für völlig neue Anwendungen über die klassischen Anwendungen hinaus, zum Beispiel in der homogenen Katalyse oder in biologischen Systemen, ebnen werden. Wir arbeiten auch genau in diese Richtung weiter“, fügt Heinze hinzu.

Die Arbeit der deutschen und kanadischen Wissenschaftler wurde in der Fachzeitschrift Angewandte Chemie publiziert.

Gefördert werden diese Forschungsarbeiten durch die Deutsche Forschungsgemeinschaft (DFG), unter anderem im Rahmen der Graduiertenschule Materials Science in Mainz, und durch den Deutschen Akademischen Austauschdienst (DAAD). Die DFG hat vor Kurzem auch das neue Schwerpunktprogramm 2102 „Licht-kontrollierte Reaktivität von Metallkomplexen" bewilligt, das von Katja Heinze koordiniert wird.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/09_anorganische_chem_rubin_druck.jpg
Molekularer Rubin in fester (rot) und gelöster (gelb) Form kann berührungsfrei den Druck messen.
Foto/©: Sven Otto, JGU

Veröffentlichung:
Sven Otto et al.
Molecular ruby under pressure
Angewandte Chemie International Editon, 2. Juli 2018
DOI: 10.1002/anie.201806755
http://onlinelibrary.wiley.com/doi/10.1002/anie.201806755/abstract

Sven Otto et al.
[Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue
Angewandte Chemie International Editon, 12. August 2015
DOI: 10.1002/anie.201504894
http://onlinelibrary.wiley.com/doi/10.1002/anie.201504894/abstract

Kontakt:
Prof. Dr. Katja Heinze
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25886
Fax +49 6131 39-27277
E-Mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/

Weiterführende Links:
https://www.mainz.uni-mainz.de/ - Exzellenz-Graduiertenschule Materials Science in Mainz (MAINZ)

Lesen Sie mehr:
http://www.uni-mainz.de/presse/aktuell/1212_DEU_HTML.php - Pressemitteilung „Johannes Gutenberg-Universität Mainz koordiniert neues DFG-Schwerpunktprogramm in der Photochemie“ (19.04.2017)
http://www.uni-mainz.de/presse/aktuell/1802_DEU_HTML.php - Pressemitteilung „Molekulares Thermometer für kontaktlose Messungen mit infrarotem Licht“ (07.06.2017)
http://www.uni-mainz.de/presse/63155.php - Pressemitteilung „Katja Heinze erhält Wissenschaftspreis für intelligente Lebensmittelverpackung mit Frischeanzeige“ (24.11.2014)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics