Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unser Kleinhirn speichert Daten wie eine MP3-Musikdatei

12.02.2020

Das Kleinhirn besteht aus sehr vielen Körnerzellen. Sie sind für die zeitliche Koordination von Bewegungsabläufen verantwortlich und machen mehr als die Hälfte der Nervenzellen des Gehirns aus. Bisher veröffentlichte Studien gehen davon aus, dass es sich bei den Körnerzellen um eine homogene Population von Zellen handelt. Forscher um Dr. Isabelle Straub und Prof. Dr. Stefan Hallermann der Universität Leipzig schauten sich die Körnerzellen genauer an und fanden heraus, dass diese Zellen systematische Unterschiede aufweisen. Das erlaubt den Körnerzellen, Informationen ähnlich wie MP3-Musikdateien zu speichern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin eLife.

Informationen von Sinnesorganen, wie den Augen oder den Ohren, werden in Form von elektrischen Impulsen von Nervenzelle zu Nervenzelle weitergegeben. Diese Impulse haben sehr unterschiedliche Wiederholungsraten und können zwischen 1 und 1000 Mal pro Sekunde auftreten.


Am Ende ihres Weges erreichen sie letztendlich die Körnerzellen im Kleinhirn, wo bestimmte Informationen gespeichert werden. Bisher gingen die Wissenschaftler davon aus, dass Körnerzellen eine einheitliche Population aus Nervenzellen darstellen, die mit diesen unterschiedlichen Signalen gleichermaßen umgeht.

Dr. Isabelle Straub vom Carl-Ludwig-Institut für Physiologie untersuchte die elektrischen Eigenschaften der Körnerzellen am Tiermodell der Maus. Sie entdeckte dabei, dass die Zellen über unterschiedliche Eigenschaften verfügen und so mehr Informationen abspeichern können.

Körnerzellen können elektrische Impulse mit spezifischen Frequenzen erkennen und weiterleiten. „Die Körnerzellen funktionieren ähnlich wie ein Sieb. Sie filtern spezifische Informationen nach ihren Frequenzen aus“, erklärt Straub.

Die Fähigkeit, Signale anhand ihrer Wiederholungsrate zu zerlegen, ähnelt der Fourier-Transformation. Diese Transformation wird bei der digitalen Kompression von Musikdateien in MP3s verwendet.

Das MP3-Verfahren ermöglicht Musik als stark reduzierte Datenmenge zu speichern. Und tatsächlich zeigen die Computersimulationen von Straub et al., dass Nervenzell-Netzwerke mit unterschiedlichen Körnerzellen eine erhöhte Speicherkapazität aufweisen.

Die aktuellen Forschungsergebnisse tragen in der Wissenschaft zum besseren Verständnis bei, wie unser Gehirn zeitliche Informationen verarbeitet und speichert. Die Wissenschaftler können in einem weiteren Schritt nun untersuchen, ob die Möglichkeit, ankommende elektrische Impulse nach Frequenzen aufzutrennen und damit die Speicherkapazität zu erhöhen, auch von anderen Hirnregionen angewendet werden kann.

Das Carl-Ludwig-Institut für Physiologie der Medizinischen Fakultät erforscht die Grundlagen der Leistungen des Nervensystems. Insbesondere wird die Kommunikation der Nervenzellen untereinander, die Veränderungen während des Lernens und der Energiestoffwechsel der Nervenzellen untersucht.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Stefan Hallermann
hallerman@medizin.uni-leipzig.de
T: 0341/9715500

Originalpublikation:

Gradients in the mammalian cerebellar cortex enable Fourier-like transformation
and improve storing capacity
DOI: https://doi.org/10.7554/eLife.51771

Weitere Informationen:

http://physiologie.medizin.uni-leipzig.de/

Peggy Darius | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-leipzig.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?
03.07.2020 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

nachricht Wirkstoffe aus Kieler Meeresalgen als Mittel gegen Infektionen und Hautkrebs entdeckt
03.07.2020 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics