Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unlocking the secret of cell regulation

04.02.2020

Ribonucleic acids (RNA) ensure that the blueprint in the cell nucleus is translated into vital proteins and that cell functions are regulated. However, little is known about the structure and function of particularly long RNAs, which consist of hundreds or thousands of building blocks. Chemists at the University of Bonn have now developed a new method for this purpose: They mark the complex molecules with tiny "flags" and measure the distances between them with a "molecular ruler". The results are published online in advance in the journal "Angewandte Chemie International Edition". The print version will be published shortly.

In living cells, everything follows a plan: The blueprints for all building and operating materials are stored in the cell nucleus. If, for example, a certain protein is required, the genetic information is read from the DNA and translated into ribonucleic acid (RNA).


Dr. Stephanie Kath-Schorr from the LIMES Institute of the University of Bonn in the laboratory.

(c) Photo: Barbara Frommann/Uni Bonn


Have developed a new method for the structural elucidation of long ribonucleic acids (RNA): Dr. Stephanie Kath-Schorr and Prof. Dr. Olav Schiemann from the University of Bonn.

(c) Photo: Barbara Frommann/Uni Bonn

The RNA transmits the blueprint to the cell's "protein factories", the ribosomes. “However, more than 80 percent of ribonucleic acids are not involved in the production of proteins at all," says Dr. Stephanie Kath-Schorr from the LIMES Institute at the University of Bonn. This so-called "non-coding" RNA is probably involved in various regulatory processes in the cell.

Scientists would like to gain a much better understanding of the control processes that non-coding RNA is responsible for. "To do this, however, we must first understand the structures of ribonucleic acids and how they are folded," says Kath-Schorr.

The spatial structure seems to have an important role in the function of RNA. It determines which molecules a certain RNA binds to and therefore triggers important processes in the cell.

A team of chemists from different institutes at the University of Bonn has now jointly developed a method to elucidate the structure and folding of particularly long RNA molecules. "Shorter RNAs can be examined using crystal structure analysis, but this method is very difficult to use when it comes to large and flexible ribonucleic acid complexes," explains first author Christof Domnick.

The scientists were therefore looking for a new way to create RNAs consisting of several hundred or even thousands of building blocks.

"Flags" for marking

The scientists around Dr. Stephanie Kath-Schorr first inserted two artificial letters into a DNA sequence, which do not occur in this form in nature. In the subsequent transcription into RNA, these artificial letters served as a kind of "flag" to mark specific locations on the ribonucleic acid, which comprises several hundred building blocks.

The researchers used the PELDOR method to measure the positions of the labels on the RNA. "The distance between the 'flags' can then be measured as if with a ruler at the molecular level," says Prof. Dr. Olav Schiemann from the Institute of Physical and Theoretical Chemistry at the University of Bonn. The markers can be placed at different locations on the ribonucleic acid and the distance between these flags can then be determined. This data is used to create an image of the structure and folding of RNA.

"We have previously experimented with shorter RNAs and compared the results with theoretical simulations," said Kath-Schorr. "The correlation was very high and the method is therefore reliable." In future, the structure of long RNAs could also be recorded in three dimensions if the labeled ribonucleic acids are recorded from different perspectives.

Great application potential

"Our long-term goal is to measure RNA structures directly in the cell," said the biochemist. "But that's still a long way off." The basic method has great potential for application. For example, RNAs serve as important markers in cancer diagnostics. Kath-Schorr: "Our new method for the structure elucidation of long, non-coding ribonucleic acids can make an important contribution to a better understanding of cellular processes."

Wissenschaftliche Ansprechpartner:

Dr. Stephanie Kath-Schorr
LIMES Institut
Chemische Biologie und Medizinische Chemie
Universität Bonn
Tel. +49-228-732652
E-mail: stephanie.kath-schorr@uni-bonn.de

Originalpublikation:

Christof Domnick, Frank Eggert, Christine Wuebben, Lisa Bornewasser, Gregor Hagelueken, Olav Schiemann, and Stephanie Kath-Schorr: EPR distance measurements on long non‐coding RNAs empowered by genetic alphabet expansion transcription, Angewandte Chemie International Edition, DOI:10.1002/anie.201916447

Johannes Seiler | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease
17.02.2020 | Science China Press

nachricht Catalyst deposition on fragile chips
17.02.2020 | Ruhr-University Bochum

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics