Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

13.02.2019

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des menschlichen Immunsystems: Umfangreiche Genomsequenzierungen ermöglichen Aussagen über die Entwicklung des Rezeptormoleküls CEACAM3 zur Erkennung von bakteriellen Krankheitserregern.


Die pseudokolorierte elektronenmikroskopische Aufnahme zeigt eine menschliche Fresszelle (lila) und ein Bakterium (türkis). Mit Hilfe des untersuchten Rezeptors CEACAM3 ist die Fresszelle in der Lage, die etwa einen Mikrometer großen Bakterien zu erkennen und zu vernichten (Bildquelle: Electron Microscopy Centre, Fachbereich Biologie, Universität Konstanz, Dr. M. Laumann; Prof. Dr. C.R. Hauck).

Copyright: Electron Microscopy Centre

Wie professionelle Einbrecher brauchen auch bakterielle Krankheitserreger das passende Werkzeug, um unseren Körper zu besiedeln. Dabei sind einige Mikroben äußerste Spezialisten, die nur bestimmte Wirte befallen.

Zu dieser kleinen Gruppe gehören die Gonokokken und der Erreger Haemophilus influenzae, die nur beim Menschen vorkommen. Beiden gemeinsam ist, dass sie geschickt verschiedene Abwehrmechanismen des menschlichen Körpers aushebeln, um sich auf der Schleimhaut festzusetzen.

Wie neue Arbeiten aus dem Labor von Prof. Dr. Christof Hauck, Zellbiologe an der Universität Konstanz, nun in der Fachzeitschrift „Current Biology“ zeigen, ist unser Körper auch diesen hochspezialisierten Bakterien nicht schutzlos ausgeliefert.

Auf sogenannten Fresszellen unseres Immunsystems findet sich ein passendes Rezeptormolekül, das Erreger wie die Gonokokken erkennt und vernichtet. Überraschenderweise gibt es diesen hochspezialisierten Bakterienfänger, der CEACAM3 genannt wird, nur beim Menschen und seinen nächsten tierischen Verwandten wie dem Schimpansen, Gorilla oder Rhesusaffen:

Jonas Adrian und Patrizia Bonsignore aus der Arbeitsgruppe von Christof Hauck untersuchten die Genome verschiedener Affenarten auf das Vorhandensein von CEACAM3. Sie konnten ein entsprechendes Rezeptormolekül nur bei höher entwickelten Affen, nicht jedoch bei Lemuren oder anderen „niederen“ Affen finden.

„Diese Erkenntnis deutet darauf hin, dass dieses Rezeptormolekül erst vor verhältnismäßig kurzer Zeit in der Evolutionsgeschichte der Primaten entstanden ist“, so Hauck. Beim Vergleich dieses Rezeptors zwischen verschiedenen Menschenaffen stellte sich zusätzlich heraus, dass sich CEACAM3 erstaunlich schnell weiterentwickelt. Zu erklären ist diese rasante Entwicklung durch die Funktion des Rezeptors als Abfangjäger für spezialisierte Bakterien:

Jede Veränderung auf der Bakterienoberfläche, durch die der Erreger einen Vorteil gegenüber dem Immunsystem erzielt, zieht im Laufe von Generationen eine entsprechende Veränderung und Weiterentwicklung von CEACAM3 nach sich. „Entstanden ist auf diese Weise eine Art molekularer Rüstungswettlauf, bei dem manchmal die Mikroben, manchmal das Immunsystem die Nase vorn hat“, erklärt Christof Hauck.

Dass wir uns hier in einem laufenden Wettstreit befinden, zeigt der Blick auf die globale Vielfalt von CEACAM3. „In manchen menschlichen Populationen, beispielsweise auf dem afrikanischen Kontinent, existieren Varianten dieses Rezeptors. Dieser detaillierte Einblick in die Genome menschlicher Populationen ist erst durch die globale Datenerhebung der letzten Jahre möglich“, erläutert Jonas Adrian.

Mit Blick auf die Funktion von CEACAM3 lag die Vermutung nahe, dass diese CEACAM3-Varianten ermöglichen, zusätzliche Erreger zu erkennen und zu eliminieren. Zur Prüfung dieser Vermutung führten Adrian und Bonsignore Bindungsstudien mit Varianten des Rezeptors und verschiedenen bakteriellen Krankheitserregern durch.

Dabei werden die Rezeptormoleküle den in der menschlichen Population vorkommenden Varianten nachempfunden, im Labor hergestellt und gezielt mit den untersuchten Erregern in Kontakt gebracht, um die Bindung an die Erreger zu testen. In der Tat konnten die Wissenschaftler so zeigen, dass diese besonderen CEACAM3 Varianten zusätzliche Erreger erkennen, darunter Haemophilus influenzae.

Während also die meisten Menschen mittels CEACAM3 spezialisierte Erreger eindämmen können, sind Personen mit einer CEACAM3 Variante sogar in der Lage, eine noch größere Bandbreite an Bakterien in Schach zu halten.

Der andauernde Wettstreit zwischen Mensch und Mikroben führt eindrücklich vor Augen, wie die Mechanismen der Evolution auch das menschliche Genom geformt haben. Dabei deutet die ungewöhnlich schnelle Entwicklung von CEACAM3 darauf hin, dass ein passgenauer Rezeptor vorteilhaft für unsere Primatenvorfahren war, um sich gegen hochspezialisierte Krankheitserreger zu behaupten.

Faktenübersicht:
• Originalpublikation: Adrian, J., Bonsignore, P., Hammer, S., Frickey, T., Hauck, C.R. (2019): Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor, Current Biology 29, 1-15. https://doi.org/10.1016/j.cub.2019.01.058. Online publiziert am 7. Februar 2019
• Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern
• Forschungsergebnisse weisen auf junge evolutionäre Entwicklung des Rezeptors CEACAM3 hin
• Die Erstautoren Jonas Adrian und Patrizia Bonsignore sind Mitglieder der Graduiertenschule Biological Sciences der Universität Konstanz
• Forschung in Kooperation mit Prof. Dr. Tancred Frickey (Scion, Neuseeland), vormals Juniorprofessor am Fachbereich Biologie der Universität Konstanz sowie der Graduiertenschule Chemische Biologie, die im Rahmen der Exzellenzinitiative bis 2019 gefördert wird
• Förderung durch die Deutsche Forschungsgemeinschaft

Hinweis an die Redaktionen:
Ein Foto kann im Folgenden heruntergeladen werden:

https://cms.uni-konstanz.de/fileadmin/pi/fileserver/2019/Bilder/Neue_Erkenntniss...
Bildunterschrift:
Die pseudokolorierte elektronenmikroskopische Aufnahme zeigt eine menschliche Fresszelle (lila) und ein Bakterium (türkis). Mit Hilfe des untersuchten Rezeptors CEACAM3 ist die Fresszelle in der Lage, die etwa einen Mikrometer großen Bakterien zu erkennen und zu vernichten (Bildquelle: Electron Microscopy Centre, Fachbereich Biologie, Universität Konstanz, Dr. M. Laumann; Prof. Dr. C.R. Hauck).
Copyright: Electron Microscopy Centre

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

- uni.kn

Originalpublikation:

Originalpublikation: Adrian, J., Bonsignore, P., Hammer, S., Frickey, T., Hauck, C.R. (2019): Adaptation to host-specific bacterial pathogens drives rapid evolution of a human innate immune receptor, Current Biology 29, 1-15. https://doi.org/10.1016/j.cub.2019.01.058. Online publiziert am 7. Februar 2019

Julia Wandt | Universität Konstanz
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diagnostik für alle
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Inaktiver Rezeptor macht Krebs-Immuntherapien wirkungslos
14.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics