Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ungeahnte Formenvielfalt roter Blutkörperchen

14.11.2016

Forscher stellen gängige physikalische Vorstellung des Fließverhaltens von Blut in Frage -- Eine Ursache von Durchblutungsstörungen kann eine veränderte Zähflüssigkeit oder "Viskosität" des Blutes sein. Untersuchungen deutscher und französischer Physiker legen nun einen Zusammenhang zwischen der Viskosität des Blutes und der plastischen Formbarkeit roter Blutkörperchen nahe. Die Ergebnisse widersprechen damit der gängigen physikalischen Vorstellung, die rote Blutkörperchen als Tropfen in einer Flüssigkeit betrachtet. Die Forscher raten dazu, Krankheiten, die die Formbarkeit der Blutzellen beeinflussen, auch unter diesem Aspekt zu untersuchen.

Etwa fünf bis sechs Liter Blut fließen durch unsere Adern, jederzeit. Gerät dieser Prozess ins Stocken, sind unsere Gesundheit oder gar unser Leben in Gefahr. Eine Ursache von Durchblutungsstörungen kann eine veränderte Zähflüssigkeit oder "Viskosität" des Blutes sein. Untersuchungen deutscher und französischer Physiker legen nun einen Zusammenhang zwischen der Viskosität des Blutes und der plastischen Formbarkeit roter Blutkörperchen nahe.


Mikroskopische Aufnahmen (oben) und Ergebnisse von Simulationen (unten) roter Blutkörperchen in Scherung: Bei niedriger Scherrate beobachteten die Forscher vor allem diskusförmige Erythrozyten, in der Mitte von beiden Seiten leicht eingedellt (links), die sich taumelnd bewegen. Bei mäßig steigender Scherrate überwiegen Blutzellen, die eine ihrer zwei Eindellungen verloren haben, und sich rollend wie Reifen bewegen. Eine noch höhere Scherrate hat ellipsenförmig verbogene Erythrozyten zur Folge (Mitte und Film 1); eine weitere Steigerung verursacht eine zusätzliche Eindellung der ellipsenförmigen Zelle. In der letzten untersuchten Stufe fanden die Forscher zunehmend Erythrozyten, die mit drei Dellen eine Form hatten, die einer Pyramide ähnelt (rechts und Film 2). Welche Formen überwiegen, hängt auch mit der Konzentration der Blutzellen zusammen (Film 3). Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen, sind hier frei zugänglich: http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental

Copyright: Forschungszentrum Jülich

Die Ergebnisse widersprechen damit der gängigen physikalischen Vorstellung, die rote Blutkörperchen als Tropfen in einer Flüssigkeit betrachtet. Die Forscher raten dazu, Krankheiten, die die Formbarkeit der Blutzellen beeinflussen, auch unter diesem Aspekt zu untersuchen (Proceedings of the National Academy of Sciences Online Early Edition, DOI: 10.1073/pnas.1608074113).

Blut ist dicker als Wasser, sagt der Volksmund. Physikalisch betrachtet ist das ohne Zweifel richtig. Doch greift es zu kurz, sich den Lebenssaft als einfache Flüssigkeit vorzustellen. Fast die Hälfte jedes Blutstropfens besteht aus zellulären Bestandteilen, vor allem roten Blutkörperchen. Von diesen Zellen, auch Erythrozyten genannt, tummeln sich etwa 4,5 bis 5,5 Millionen in jedem Kubikmillimeter. Sie bestimmen wesentlich die Viskosität: Je höher der Erythrozytgehalt, umso zähflüssiger ist das Blut.

Ebenso wichtig ist die so genannte Scherrate – die Kraft, die beim Fluss entlang einer Gefäßwand auf die Erythrozyten wirkt. Sie wirkt der Neigung der Zellen entgegen, zusammen zu kleben, und verringert so die Viskosität. Weil die Scherrate umso größer ist, je schneller das Blut fließt und je kleiner der Gefäßdurchmesser ist, kann Blut bei großen Anstrengungen leichter die Blutgefäße durchfließen; das entlastet das Herz.

Wissenschaftler des Forschungszentrums Jülich sowie der französischen Universität Montpellier fanden nun Hinweise darauf, dass auch die Formbarkeit der roten Blutkörperchen einen entscheidenden Anteil an der Fließfähigkeit des Blutes hat. Bei zahlreichen Fließexperimenten hatten Forscher bisher charakteristische Bewegungen roter Blutkörperchen beobachtet: Die Erythrozyten bewegten sich ähnlich wie Wassertropfen, die eine Glasscheibe entlang laufen. Im Ruhezustand haben Erythrozyten die Form eines Diskus mit verdicktem Rand.

Die Forscher fanden bei ihren Experimenten und Computersimulationen nun mehrere ganz andere Formen und Bewegungen, abhängig von der Konzentration der Blutzellen sowie der Scherrate. "Unsere Untersuchungen legen nahe, dass physiologische Phänomene, bei denen man bisher von einer tropfenähnlichen Bewegung der Erythrozyten ausgegangen ist, neu untersucht werden sollten", berichtet Prof. Gerhard Gompper, Direktor am Institute for Advanced Simulation und am Institute of Complex Systems des Forschungszentrums Jülich. Es sei möglich, dass Störungen der Formbarkeit der roten Blutkörperchen eine Schlüsselrolle bei der Ausbildung von Krankheiten einnehmen, die mit gestörter Durchblutung einhergehen.

Früheren Untersuchungen blieb die Formenvielfalt verborgen, da dabei Flüssigkeiten verwendet wurden, die um ein Vielfaches viskoser waren als das Innere der roten Blutkörperchen, so die Forscher. "Dies sollte im Labor die hohen Scherraten und hohen Scherkräfte zugänglich machen, die in echtem Blut in der Mikrozirkulation auftreten", erläutert Dr. Dmitry Fedosov, Mitarbeiter am Institute of Complex Systems. "Unter physiologischen Bedingungen beträgt jedoch die Viskosität des Blutplasmas nur etwa ein Fünftel der Viskosität innerhalb der Erythrozyten." Deshalb hat das Jülicher Team die Fließbewegung roter Blutkörperchen nun bei realitätsnahen Bedingungen simuliert, ebenso wie die französischen Kooperationspartner des Teams ihre Kapillar- und Scherexperimente nun in Flüssigkeiten durchführten, deren Viskosität den natürlichen Bedingungen näher kam.

Originalveröffentlichung:

Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions;
L. Lanotte et al.;
Proceedings of the National Academy of Sciences Early Edition, DOI: 10.1073/pnas.1608074113, Publication Date (Web): Week of November 7-11, 2016

Bilder/Filme:

Blutkörperchen in ScherungMikroskopische Aufnahmen (oben) und Ergebnisse von Simulationen (unten) roter Blutkörperchen in Scherung: Bei niedriger Scherrate beobachteten die Forscher vor allem diskusförmige Erythrozyten, in der Mitte von beiden Seiten leicht eingedellt (links), die sich taumelnd bewegen. Bei mäßig steigender Scherrate überwiegen Blutzellen, die eine ihrer zwei Eindellungen verloren haben, und sich rollend wie Reifen bewegen. Eine noch höhere Scherrate hat ellipsenförmig verbogene Erythrozyten zur Folge (Mitte und Film 1); eine weitere Steigerung verursacht eine zusätzliche Eindellung der ellipsenförmigen Zelle. In der letzten untersuchten Stufe fanden die Forscher zunehmend Erythrozyten, die mit drei Dellen eine Form hatten, die einer Pyramide ähnelt (rechts und Film 2). Welche Formen überwiegen, hängt auch mit der Konzentration der Blutzellen zusammen (Film 3). -- Die beschriebenen Filme finden Sie auf der Website des Forschungszentrums Jülich: http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2016/2016-11-10-blu... Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen, sind hier frei zugänglich: http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental
Copyright: Forschungszentrum Jülich

Ansprechpartner:

Dr. Dmitry Fedosov
Forschungszentrum Jülich
Institute of Complex Systems - Theorie der Weichen Materie und Biophysik (ICS-2)
Tel. 02461 61-2972
E-Mail: d.fedosov@fz-juelich.de

Prof. Dr. Gerhard Gompper
Forschungszentrum Jülich
Institute of Complex Systems und Institute for Advanced Simulation - Theorie der Weichen Materie und Biophysik (ICS-2/IAS-2)
Tel. 02461 61-4012
E-Mail: g.gompper@fz-juelich.de

Pressekontakt:

Angela Wenzik
Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2016/2016-11-10-blu... Pressemitteilung auf der Website des Forschungszentrum Jülich mit den beschriebenen Filmen
http://www.pnas.org/content/suppl/2016/11/09/1608074113.DCSupplemental Weitere Filme der Forscher, darunter Hochgeschwindigkeitsaufnahmen echter Erythrozytenbewegungen
http://www.fz-juelich.de/ics/DE/Home/home_node.html - Website des Institute of Complex Systems

Dipl.-Biologin Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics