…und raus bist du! Nanoteilchen zählen ihre Ladung aus

Erstmals haben Forscher untersucht, wie viel elektrische Ladung Nanopartikel an eine Unterlage abgeben. Sergey Kozlov and Oriol Lamiel

Ob in der chemischen Industrie, im Abgaskatalysator, in neuartigen Solarzellen, oder in neuen elektronischen Bauelementen: Kleinste Nanoteilchen sorgen mit ganz besonderen Eigenschaften dafür, dass moderne Produktions- und Umwelttechnologien effizient und ressourcenschonend funktionieren.

Häufig erhalten diese Nanopartikel ihre besonderen Eigenschaften durch eine chemische Wechselwirkung mit der Unterlage, auf der sie aufgebracht sind. Dabei kann die elektronische Struktur der Partikel verändert werden, das heißt sie nehmen elektrische Ladung auf oder geben diese ab.

Arbeitsgruppen der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und der Universität Barcelona ist es nun erstmals gelungen, die Anzahl der Ladungen abzuzählen, die Platin-Nanopartikeln verloren gehen, wenn sie auf eine typische Oxidunterlage aufgebracht werden. Ihr Ergebnis ist ein wichtiger Schritt, um passgenaue Nanoteilchen zu entwickeln.*

Seit vielen Jahrzehnten ist eine der Fragen, die am intensivsten unter Nanoforschern diskutiert wird, wie Nanopartikel mit Unterlagen, auf die aufgebracht werden, wechselwirken.

Mittlerweile steht fest, dass verschiedene physikalische und chemische Faktoren wie die Elektronenstruktur, die Nanostruktur und – als ganz entscheidender Punkt – die Interaktion mit dem Untergrund, die Eigenschaften von Nanoteilchen steuern.

Obwohl der letzte Faktor, die Aufnahme oder Abgabe elektrischer Ladung, bereits häufig beobachtet wurde, hat noch keine Forschergruppe untersucht, wie viele Ladungen ausgetauscht werden und ob es einen Zusammenhang zur Größe des Nanopartikels gibt.

Um die ausgetauschte elektrische Ladung zu bestimmen, stellte das Forscherteam aus Deutschland, Spanien, Italien und Tschechien um Prof. Dr. Jörg Libuda, Professur für Physikalische Chemie, und Prof. Dr. Konstantin Neyman, Universität Barcelona, eine sehr reine und atomar geordnete Oberfläche her, auf der sie Platin-Nanoteilchen aufbrachten.

Mit einer besonders empfindlichen Analysemethode, die an der europäischen Großforschungseinrichtung Elettra in Triest zur Verfügung steht, konnten sie dann den Effekt zum ersten Mal quantitativ erfassen. Für Partikel von einigen wenigen bis hin zu vielen hundert Atomen zählten die Forscher ab, wie viele Ladungen die Metallteilchen an die Oberfläche verlieren und stellten fest, dass der stärkste Effekt bei Teilchen mit etwa 50 Atomen auftritt.

Besonders überrascht waren sie von der Stärke des Effektes: Etwa jedem zehnten Metallatom kommt eine Elementarladung abhanden. Darüber zeigten die Wissenschaftler mit theoretischen Untersuchungen, wie der Effekt gezielt gesteuert werden kann. Diese Steuerung erlaubt es, die chemischen Eigenschaften der Platinpartikel besser an jeweilige Anwendung anzupassen und so zum Beispiel in katalytischen Verfahren in der chemischen Industrie wertvolle Rohstoffe und Energie einzusparen.

Gefördert wurde das Projekt unter anderem von der EU sowie vom Exzellenzcluster Engineering of Advances Materials (EAM) der FAU. Ziel der Erlanger EAM-Wissenschaftler ist es, naturwissenschaftlich geprägte Grundlagenforschung und deren ingenieurwissenschaftliche Umsetzung zusammenzuführen, um neue hierarchisch aufgebaute Materialien mit maßgeschneiderten elektronischen, optischen, katalytischen und mechanischen Eigenschaften erforschen und entwickeln zu können.

*doi: 10.1038/nmat4500

Ansprechpartner für Medien:
Prof. Dr. Jörg Libuda
Tel.: 09131/85-27308
joerg.libuda@fau.de

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fau.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues Schweißverfahren für Windräder

… ermöglicht beschleunigte Produktion. Die Bundesanstalt für Materialforschung und -prüfung (BAM) stellt auf der diesjährigen Hannover Messe ein innovatives Schweißverfahren für Windräder vor, mit dem sich die Produktionsgeschwindigkeit von Windgiganten…

Wie Blaualgen Mikroorganismen manipulieren

Forschungsteam an der Universität Freiburg entdeckt ein bisher unbekanntes Gen, das indirekt die Photosynthese fördert. Cyanobakterien werden auch Blaualgen genannt und gelten als „Pflanzen des Ozeans“, weil sie in gigantischen…

Wiederaufladbare Nanotaschenlampe

Nachleucht-Lumineszenz-Bildgebung verfolgt zellbasierte Mikroroboter in Echtzeit. Eine nachleuchtende Nanosonde eröffnet neue Perspektiven für bildgebende Verfahren in lebenden Zellen. Wie ein Forschungsteam in der Zeitschrift Angewandte Chemie berichtet, kann die neue…

Partner & Förderer