Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unbeständige Proteine: Neue Einsichten in Transportmechanismus

30.09.2013
Die äussere Hülle von Bakterien enthält viele Proteine, die feinste Poren bilden. Sie sind wichtig für die Aufnahme von Nährstoffen und die Übermittlung von Signalen in das Innere der Zelle.

Die Gruppe von Sebastian Hiller, Professor für Strukturbiologie am Biozentrum der Universität Basel, zeigt nun erstmals in atomarer Auflösung, dass diese Membranproteine in einem unstrukturierten, sich ständig ändernden Zustand zur äusseren Bakterienhülle transportiert werden. Die wegweisende Studie ist in der Fachzeitschrift «Nature Structural and Molecular Biology» erschienen.

Die Zellhülle von Bakterien ist eine natürliche Barriere zur Umgebung und gleichzeitig das Tor zur Welt. Gram-negative Bakterien umhüllen sich mit zwei Membranschichten. Mit der Umwelt kommunizieren sie über Proteine, die in der äusseren Zellmembran verankert sind und feinste Poren bilden. Wie genau diese Membranproteine an ihren Bestimmungsort gelangen, beobachteten die Forscher um Prof. Sebastian Hiller vom Biozentrum der Universität Basel nun erstmals auf atomarer Ebene im Bakterium Escherichia coli.

Molekulare «Fähre» sorgt für sicheren Proteintransport
Neue Proteine entstehen in den Proteinfabriken im Inneren der Zelle. Damit die Proteine für die äussere Membran jedoch unbeschädigt den wässrigen Raum zwischen den beiden Membranen überwinden können, braucht es eine molekulare «Fähre». Eine solche Fähre stellt das Protein Skp dar. Wie über einen Fluss transportiert es die noch nicht gefalteten Proteine von einer Seite zur anderen. Dort erst erhalten sie ihre dreidimensionale Struktur und werden in die äussere Membran eingebaut.

Die aktuelle Studie gewährt einen aussergewöhnlichen und tiefen Einblick in den Transportmechanismus. So wird das zu befördernde Membranprotein locker in die feste Struktur des Skp eingebettet. Dabei nimmt es selbst jedoch keine definierte räumliche Struktur ein. «Ganz im Gegenteil, das ungefaltete Protein verändert seinen Zustand ständig – in weniger als einer Tausendstelsekunde und mehr als zehn Millionen Mal während der Überfahrt», erläutert Hiller. «Nur mithilfe der modernen Kernspinresonanzspektroskopie war es uns möglich, diese extrem dynamische Wechselwirkung mit Skp nachzuweisen.» Der Transport in diesem unbeständigen Zustand benötigt keine Energie und ermöglicht eine schnelle Freigabe des beförderten Proteins am Zielort.

Dynamischer Transport als generelles Prinzip
Obwohl die Struktur von Skp schon seit Längerem bekannt ist, zeigt die aktuelle Studie, dass die Dynamik des Skp-Membranprotein-Komplexes für die Entstehung der äusseren Membranproteine wichtig ist. Mit der atomaren Auflösung dieses Komplexes konnten Hiller und sein Team zudem ein generelles Prinzip aufdecken, wie Membranproteine energieunabhängig transportiert werden. Zukünftig möchten sich die Wissenschaftler weitere Proteine, die an dem Transport- und Faltungsprozess beteiligt sind, näher anschauen.
Originalbeitrag
Björn M Burmann, Congwei Wang & Sebastian Hiller (2013)
Conformation and dynamics of the periplasmic membrane-protein–chaperone complexes OmpX–Skp and tOmpA–Skp

Nature Structural & Molecular Biology, Published online 29 September 2013 | doi: 10.1038/nsmb.2677

Reto Caluori | Universität Basel
Weitere Informationen:
http://www.unibas.ch
http://www.unibas.ch/index.cfm?uuid=96855398D62121F8339989EA09D23513&type=search&show_long=1

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HIF-1α bremst Natürliche Killerzellen aus
25.05.2020 | Universitätsmedizin Mannheim

nachricht Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt
22.05.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung - »Smart Health«

Die Mikroelektronik als Schlüsseltechnologie ermöglicht zahlreiche Innovationen im Bereich der intelligenten Medizintechnik. Das vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordinierte BMBF-Verbundprojekt »I-call« realisiert erstmals ein Elektroniksystem zur ultraschallbasierten, sicheren und störresistenten Datenübertragung zwischen Implantaten im menschlichen Körper.

Wenn mikroelektronische Systeme für medizintechnische Anwendungen eingesetzt werden, müssen sie hohe Anforderungen hinsichtlich Biokompatibilität,...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung - »Smart Health«

25.05.2020 | Medizintechnik

Wie Drohnen explosive Vulkane überwachen können

25.05.2020 | Geowissenschaften

Verlustfreie Stromleitung an den Kanten

25.05.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics