Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultradünne CIGSE-Solarzellen: Nanostrukturen steigern den Wirkungsgrad

24.03.2017

Ultradünne CIGSe-Solarzellen sparen Material und Energie bei der Herstellung. Allerdings sinkt auch ihr Wirkungsgrad. Mit Nanostrukturen auf der Rückseite lässt sich dies verhindern, zeigt eine Forschungsgruppe vom HZB zusammen mit einem Team aus den Niederlanden. Sie erzielten bei den ultradünnen CIGSe-Zellen einen neuen Rekord bei der Kurzschlussstromdichte.

Eine interessante Klasse von Solarzellen besteht aus den Elementen Kupfer, Indium, Gallium und Selen, die in einer Chalkopyrit-Kristallstruktur angeordnet sind. Dünnschicht-CIGSe-Solarzellen können im Labor Wirkungsgrade von bis zu 22,6 Prozent erreichen und besitzen im Vergleich zu den marktführenden Solarmodulen aus Silizium einige Vorteile. Unter anderem lassen sie sich mit weniger Energie herstellen und haben geringere Einbußen bei Verschattung.


Nanostruktures fangen das Licht ein, zeigt diese Illustration auf dem Titel von Advanced Optical Materials.

Credit: Adv. Opt. Mat. 5/2017

Indium eingespart

Die Massenproduktion von CIGSe-Zellen würde jedoch große Mengen Indium erfordern. Indium zählt aber zu den seltenen Elementen, deren Vorkommen weltweit begrenzt sind. Ein interessanter Ansatz ist daher, CIGSe-Dünnschichten noch deutlich dünner zu machen.

Während eine typische CIGSe-Dünnschicht-Solarzelle 2-3 Mikrometer dick ist, misst eine „ultradünne“ Schicht weniger als 0,5 Mikrometer und kommt für die gleiche Modulfläche mit einem Bruchteil an Indium aus. Allerdings absorbieren ultradünne Solarzellen auch wesentlich weniger Licht, was den Wirkungsgrad stark verringert.

Nanostrukturierte Rückkontakte fangen das Licht ein

Nun hat die Forschungsgruppe Nanooptix am HZB von Prof. Martina Schmid gezeigt, wie sich die Absorptionsverluste in ultradünnen CIGSe-Schichten größtenteils verhindern lassen. Gemeinsam mit dem Team von Prof. Albert Polman am Institute for Atomic and Molecular Physics (AMOLF), Niederlande, haben sie nanostrukturierte Rückkontakte entwickelt, die das Licht einfangen: Diese Nanostruktur besteht aus einem regelmäßigen Muster aus Siliziumoxidpartikeln auf einem ITO-Substrat.

Beste ultradünne Zelle kommt fast an Leistung einer "normalen" CIGSe-Dünnschicht heran

Kombiniert mit einer reflektierenden Schicht erreichte die beste ultradünne CIGSe-Zelle eine Kurzschlussstromdichte von 34,0 mA/cm2. Dies ist der bislang höchste Wert, der jemals an einer ultradünnen CIGSe-Zelle gemessen wurde. Mehr noch: Dies entspricht bereits 93 Prozent der Kurzschlussstromdichte der Rekord-CIGSe-Zelle mit üblicher Dicke.

Nanostrukturen verbessern auch elektrische Eigenschaften

Außerdem verbessern die Nanostrukturen auch die elektrischen Eigenschaften der Zelle und steigern den Wirkungsgrad im Vergleich zu Zellen ohne nanostrukturierte Rückkontakte auf das Anderthalbfache. „Damit haben wir gezeigt, dass Nanostrukturen bei ultradünnen CIGSe-Solarzellen sowohl die optische Absorption verstärken als auch einige elektrische Aspekte günstig beeinflussen“, sagt Guanchao Yin, Erstautor der Publikation. „Diese Ergebnisse belegen, dass optoelektronische Nanostrukturen eine interessante Möglichkeit sind, um hohe Wirkungsgrade mit deutlich weniger Materialeinsatz zu erreichen“, sagt Prof. Martina Schmid, die nun als Professorin für „Experimentelle Physik“ an die Universität Duisburg wechselt. „Mit der Nachwuchsgruppe habe ich die Chance erhalten, selbstständig zu forschen und meine Karriere zu starten. Dafür danke ich dem HZB und der Helmholtz-Gemeinschaft.“

Die Arbeit ist in Advanced Optical Materials (5, 2017) veröffentlicht und auf der Titelseite erschienen.

Optoelectronic Enhancement of Ultrathin CuIn1–xGaxSe2 Solar Cells by Nanophotonic Contacts; Guanchao Yin, Mark W. Knight, Marie-Claire van Lare, Maria Magdalena Solà Garcia, Albert Polman, Martina Schmid

DOI: 10.1002/adom.201600637

Kontakt:

Prof. Dr. Martina Schmid
E-Mail: martina.schmid@helmholtz-berlin.de

Dr. rer. nat. Guanchao Yin
E-Mail: guanchao.yin@helmholtz-berlin.de

HZB-Pressestelle
Dr. Antonia Rötger
E-Mail: antonia.roetger@helmholtz-berlin.de

Weitere Informationen:

http://www.helmholtz-berlin.de/pubbin/news_seite?nid=14631&sprache=de&ty...
http://onlinelibrary.wiley.com/doi/10.1002/adom.201770026/full

Dr. Ina Helms | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klima- und Höhensimulationsprüfstand für Motoren an der Hochschule Karlsruhe in Betrieb genommen

16.11.2018 | Maschinenbau

Rasende Elektronen unter Kontrolle

16.11.2018 | Physik Astronomie

Übergangsmetallkomplexe: Gemischt geht's besser

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics