Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überlebensstrategien von Bakterien unter Beteiligung Greifswalder Forscher aufgeklärt

05.03.2012
Einem internationalen Forscherteam ist es gelungen, aufzuklären, wie sich einfach strukturierte Bakterien auf molekularer Ebene an wechselnde Umweltbedingungen anpassen und damit ihr Überleben sichern. Die Ergebnisse wurden in der aktuellen Ausgabe des fachübergreifenden Wissenschaftsmagazins SCIENCE veröffentlicht.
An den wissenschaftlichen Veröffentlichungen waren auch elf Wissenschaftler des Instituts für Mikrobiologie sowie des Instituts für Genetik und Funktionelle Genomforschung der Universität Greifswald über zwei internationale Verbundprojekte (BaSysBio und BaCell-SysMO) beteiligt. Dr. Ulrike Mäder und Dr. Jan Muntel haben dabei sogar als gleichwertige Erstautoren wesentliche Beiträge zu den beiden Arbeiten geleistet.

Als Modellorganismus für die Untersuchungen wurde das Bodenbakterium Bacillus subtilis gewählt. Es verursacht selbst keine Krankheiten, gilt aber als Modellorganismus für Krankheitserreger und wird in der Industrie vielfältig für die Produktion von Enzymen und Vitaminen eingesetzt.

Bei den Untersuchungen wurden Methoden der experimentellen Biologie und der Bioinformatik mit mathematischen Modellierungsansätzen kombiniert. Dazu wurden zunächst äußerst umfangreiche Datensätze zur Charakterisierung Komponenten in den Zellen (Transkripte, Proteine und Metabolite) unter unterschiedlichen Wachstumsbedingungen aufgenommen. Diese experimentellen Daten wurden anschließend bioinformatisch analysiert und in mathematische Modelle integriert. Sogar bei einem relativ einfachen Organismus wie Bacillus subtilis, dessen Genom lediglich 4200 Gene umfasst, sind solche Modelle absolut unentbehrlich, um die komplexen molekularen Anpassungsvorgänge zu erfassen.

Die Arbeit von Pierre Nicolas et al. beschreibt die Analyse des Transkriptoms von Bacillus subtilis, also der Gesamtheit aller Gen-Transkripte (mRNAs) des Bakteriums, unter einer Vielzahl verschiedener Wachstumsbedingungen, wie unterschiedliche Nährstoffangebote oder hohe und niedrige Umgebungstemperaturen. In ihrer Gesamtheit spiegeln diese experimentell erzeugten Umweltbedingungen die Herausforderungen wieder, die dieses Bakterium in seinem natürlichen Lebensraum bewältigen muss. Neben der bisher wahrscheinlich umfassendsten Beschreibung der Dynamik sämtlicher Transkriptionseinheiten eines Bakterium einschließlich vieler potenzieller neuer Gene und sogenannter Antisense-RNAs trug dieser Ansatz entscheidend dazu bei, zu klären, wie sich die Zellen an veränderte Umweltbedingungen durch das Zusammenspiel verschiedener Gene anpassen.

Der bedeutendste Aspekt dieser Studie ist die genomweite Beschreibung der Funktion genetischer Schalter mit Hilfe eines neuen statistischen Verfahrens.

Die Arbeit von Joerg Martin Buescher et al. beschreibt am Beispiel der Nutzung von zwei Kohlenstoffquellen eine umfassende Analyse der dynamischen Anpassung des bakteriellen Metabolismus an sich verändernde Nährstoffbedingungen. Um sich an wechselnde Umweltbedingungen anzupassen, müssen verschiedene Netzwerke in Bacillus subtilis zusammenwirken. Die Wissenschaftler hatten es sich daher zum Ziel gesetzt, durch eine kombinierte statistische und modellbasierte Analyse von Datensätzen alle Ebenen der Regulation zu erfassen. Letztlich konnte gezeigt werden, dass das Bodenbakterium bei der Umstellung seines Metabolismus auf die Nutzung von zwei verschiedenen Kohlenstoffquellen (Glukose bzw. Malat) ganz unterschiedliche Strategien einsetzt. Im Rahmen der Studie gewonnene Ergebnisse legen nahe, dass evolutionäre Zwänge auch die Realisierung sehr komplexer Regulationsprogramme begünstigen können.

In den beiden Verbundprojekten BaSysBio und BaCell-SysMO arbeiten Mikrobiologen, Funktionelle Genomforscher, Genetiker und Biochemiker mit Bioinformatikern und Systembiologen zusammen. Durch diese wissenschaftliche Kooperation konnten die grundlegend neuen, physiologischen Erkenntnisse gewonnen werden, die in zwei Artikeln in der aktuellen Ausgabe der Fachzeitschrift SCIENCE veröffentlicht wurden.

Die Greifswalder Forscher sind aufgrund ihrer Erfahrungen sowie ihres Know-how im Bereich der Funktionellen Genomanalyse, insbesondere im Bereich Proteomics, gefragte Partner in diesen EU-Netzwerken.

SCIENCE gilt als eines der wichtigsten Wissenschaftsmagazine weltweit. Fachartikel werden dort nur nach außerordentlich strenger wissenschaftlicher Begutachtung veröffentlicht.

Weitere Informationen
Interfakultäres Institut für Genetik und Funktionelle Genomforschung http://www.medizin.uni-greifswald.de/funkgenom/
Institut für Mikrobiologie http://www.mnf.uni-greifswald.de/institute/fr-biologie/institute-und-forschung/institut-fuer-mikrobiologie.html
Artikel von Joerg Martin Buescher et al. http://www.sciencemag.org/content/335/6072/1099.full.html
Artikel von Pierre Nicolas et al. http://www.sciencemag.org/content/335/6072/1103.full.html
SCIENCE http://www.sciencemag.org/

Ansprechpartner an der Universität Greifswald
Prof. Dr. Uwe Völker und Prof. Dr. Michael Hecker
Interfakultäres Institut für Genetik und Funktionelle Genomforschung / Institut für Mikrobiologie
Friedrich-Ludwig-Jahn-Straße 15a, 17487 Greifswald
Telefon 03834 86-5870
voelker@uni-greifswald.de

Jan Meßerschmidt | idw
Weitere Informationen:
http://www.uni-greifswald.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics