Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UDE-Chemiker entwickeln Nano-Paste, die Knochendefekte heilt

20.02.2013
Nach Unfällen oder einer Tumor-OP sind oft die Knochen so geschädigt, dass Ärzte dann gesundes Knochengewebe transplantieren oder künstliches Material verwenden müssen. Nicht immer mit dem gewünschten Erfolg.

Prof. Dr. Matthias Epple von der Universität Duisburg-Essen (UDE) und sein Team haben nun eine Paste aus Nanopartikeln entwickelt, die in die Defekte gespritzt werden kann und sie dann besser heilen lässt.


Grafik zur Funktionsweise der Paste
Bildnachweis: UDE

Der Trick: Die Forscher kombinieren das synthetisch hergestellte Knochenmineral Calciumphosphat mit DNA.

Die Forschung an der Schnittstelle zu Biologie und Medizin hat es Matthias Epple angetan. „Wir beschäftigen uns seit Jahren damit, was mineralisches Gewebe wie Zähne, Knochen und Muschelschalen bewirkt, und versuchen, unsere Erkenntnisse in neue Biomaterialien umzusetzen“, sagt der Professor für Anorganische Chemie. Hierfür arbeitet er eng mit Medizinern zusammen. So auch bei seinem aktuellen Projekt, das er mit drei seiner Doktoranden durchgeführt hat.

„Die Behandlung von Knochendefekten ist für Chirurgen eine echte Aufgabe. Wenn es möglich ist, nehmen sie überschüssigen eigenen Knochen des Patienten zur Auffüllung – etwa aus dem Beckenkamm. Weil es davon aber nur eine begrenzte Menge gibt, greifen sie auch auf synthetisches, also künstliches Material zurück“, sagt Epple. „Dabei wird sehr gerne Calciumphosphat verwendet, denn es ist das anorganische Mineral, das im Knochen als Nanokristall zu finden ist. Dem Körper ist es also wohlbekannt, was es zu einem geeigneten Träger macht. Außerdem führen die Calcium- und Phosphat-Ionen zu einer verbesserten Knochenbildung.“

So ein Ersatz ist dennoch nicht ohne: Er heilt wesentlich schlechter ein, die Infektionsgefahr ist größer, und die mechanische Stabilität könnte besser sein. Epples Team hat nun künstliche Calciumphosphat-Nanokristalle mit Nukleinsäuren, also DNA, beschichtet und daraus eine Paste erzeugt. Wenn diese in einen Knochendefekt gespritzt wird, sollte Folgendes passieren: „Zellen nehmen die Nanopartikel auf. Das Calciumphosphat löst sich auf, und die freigesetzte DNA stößt die Bildung von zwei Proteinen an, die für eine Heilung wichtig sind“, erklärt Epple. „Da ist zum einen BMP-7, das die Knochenbildung anregt, zum andern VEGF-A, das dafür sorgt, dass Blutgefäße entstehen. So kann der neugebildete Knochen mit Nährstoffen versorgt werden.“

Die UDE-Forscher erwarten, dass die Wirkung der Paste lange anhält, da die Nanopartikel nach und nach freigesetzt werden und somit permanent die umgebenden Zellen stimulieren. Dass es funktioniert, haben sie an drei Zelltypen nachgewiesen. Jetzt müssen noch weitere Tests gemacht werden. „Wir hoffen“, so Epple, „dass unsere Entwicklung in einigen Jahren in der Unfallchirurgie und auch bei der Behandlung von Osteoporose helfen kann.“

Die Forschungsergebnisse wurden jüngst im internationalen Journal RSC Advances veröffentlicht:

DOI: http://dx.doi.org/10.1039/C3RA23450A

Weitere Informationen:
Prof. Dr. Matthias Epple,
Tel. 0201/183-2413, matthias.epple@uni-due.de

Ulrike Bohnsack | idw
Weitere Informationen:
http://www.uni-due.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics