Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trockenstress – Biologen entschlüsseln SOS-Signal von Pflanzen

27.03.2020

Peptidhormon steuert vorzeitigen Abwurf von Blüten und Früchten: Team der Universität Hohenheim entdeckt neuartigen Signalweg

Lange Trockenphasen und Dürren werden im Zuge des Klimawandels weiter zunehmen und können zu erheblichen Ernteeinbußen führen. Viele Kulturpflanzen, darunter Obstbäume, Baumwolle oder Sojabohne, reagieren bei Anzeichen von Trockenstress mit einem vorzeitigen Abwurf von Blüten und unreifen Früchten, um keine Energie für die Ausbildung von Früchten zu vergeuden, die später nicht mehr ernährt werden können.


Welcher molekulare Steuerungsmechanismus dafür verantwortlich ist, haben Biologen der Universität Hohenheim in Stuttgart nun aufklärt. Ihre Ergebnisse präsentieren die beteiligten Wissenschaftler in der aktuellen Ausgabe des Wissenschaftsmagazin Science unter: https://science.sciencemag.org/cgi/doi/10.1126/science.aaz5641

Früchte oder Blätter abzuwerfen, ist für Pflanzen ein lebenswichtiger Vorgang, der hilft Samen zu verbreiten oder im Winter vor dem Austrocknen schützt. Wie der Abwurf von Pflanzenorganen unter normalen Bedingungen ausgelöst wird, ist bereits gut untersucht.

Gesteuert wird der Prozess in der sogenannten Abszissionszone, einem Trenngewebe am Stielansatz, dessen Aktivität von Pflanzenhormonen reguliert wird.

Während der normalen Fruchtentwicklung sorgt das wachstumsfördernde Auxin dafür, dass die Abszissionszone inaktiv bleibt, bei Fruchtreife oder wenn es im Herbst zum Laubfall kommt, wird sie durch das Hormon Ethylen aktiviert.

Doch wenn die Pflanze unter Stress steht, insbesondere bei Trockenheit, kann es sinnvoll sein, Blüten und Blätter vorzeitig abzuwerfen: „Die Pflanze ist bestrebt, nur so viele Früchte auszubilden wie sie auch ernähren kann. Wer einen Apfelbaum hat, kennt das Phänomen aus dem eigenen Garten:

Im Juni fallen oft viele kleine Äpfel herunter. Nur die Verbleibenden reifen zu vollen, schönen Früchte heran“, so Prof. Dr. Andreas Schaller, Leiter des Fachgebiets Physiologie und Biochemie der Pflanzen an der Universität Hohenheim.

Wie genau der vorzeitige Abwurf auf molekularer Ebene gesteuert wird, stellte für Wissenschaftler bislang jedoch ein Rätsel dar. Am Beispiel der Tomatenpflanze ist es dem Biologen-Team um Prof. Dr. Andreas Schaller, Dr. Annick Stintzi und Dr. Sven Reichardt nun mit Hilfe des Biostatistikers Prof. Dr. Hans-Peter Piepho gelungen, dem zugrundeliegenden Mechanismus auf die Spur zu kommen: Verantwortlich ist das Peptidhormon Phytosulfokin (PSK), das bislang nur für seine wachstumsfördernden und immunmodulierenden Aktivitäten bekannt war.

Peptidhormone unterscheiden sich grundlegend von den klassischen Pflanzenhormonen, wie Auxin oder Ethylen, die bereits gut erforscht sind. Peptidhormone werden zunächst als inaktive Vorstufen gebildet und müssen erst durch Enzyme aktiviert werden, bevor sie ihre steuernde Wirkung ausüben können. Die Enzyme schneiden das Peptid sozusagen passend zurecht, damit es auf den zugehörigen Rezeptor passt.

„Unsere Versuche haben gezeigt, dass die Aktivierung durch das Enzym Phytaspase 2 erfolgt, das die Vorstufe von Phytosulfokin ganz spezifisch spaltet und damit das Peptidhormon freisetzt. Das so aktivierte Peptid bewirkt im Ansatz des Blütenstiels dann eine Auflösung der Zellwände und damit den Abwurf der Blüten“, erklärt Prof. Dr. Schaller.

Stressfaktoren wie Trockenheit haben einen Einfluss auf die Expression des Gens, welches für die Bildung des Enzyms Phytaspase 2 verantwortlich ist: „In unseren Versuchen konnten wir zeigen, dass eine Aktivierung dieses Gens den Prozess in Gang setzt. Das Peptidhormon wird gebildet und das führt zu einem verstärkten Abwurf der Blüten, wohingegen ein Ausschalten des Gens den Abwurf verhinderte“, fasst der Pflanzenbiologe zusammen.

Aktuelle Publikation

S. Reichardt, H.-P. Piepho, A. Stintzi, A. Schaller (2020): Peptide signaling for drought-induced tomato flower drop, SIENCE, Vol. 367, Issue 6485

DOI: 10.1126/science.aaz5641

Aktuelle Science-Publikation: https://science.sciencemag.org/cgi/doi/10.1126/science.aaz5641

Kontakt für Medien
Prof. Dr. Andreas Schaller, Universität Hohenheim, Fachgebiet Physiologie und Biochemie der Pflanzen, T 0711 459 22197, E andreas.schaller@uni-hohenheim.de

Zu den Pressemitteilungen der Universität Hohenheim
https://www.uni-hohenheim.de/presse

Text: Leonhardmair

Leonhardmair | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unschuldig und stark oxidierend
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Atherosklerose - Wie RNA-Schnipsel die Gefäße schützen
04.06.2020 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleines Protein, große Wirkung

In Meningokokken spielt das unscheinbare Protein ProQ eine tragende Rolle. Zusammen mit RNA-Molekülen reguliert es Prozesse, die für die krankmachenden Eigenschaften der Bakterien von Bedeutung sind.

Meningokokken sind Bakterien, die lebensbedrohliche Hirnhautentzündungen und Sepsis auslösen können. Diese Krankheitserreger besitzen ein sehr kleines Protein,...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: Magnetische Kristallschichten für den Computer von Morgen

Ist die Elektronik, so wie wir sie kennen, am Ende?

Der Einsatz moderner elektronischer Schaltkreise für immer leistungsfähigere Rechentechnik und mobile Endgeräte stößt durch die zunehmende Miniaturisierung in...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: Neue Messung verschärft altes Problem

Seit Jahrzehnten rätseln Astrophysiker über zwei markante Röntgen-Emissionslinien von hochgeladenem Eisen: ihr gemessenes Helligkeitsverhältnis stimmt nicht mit dem berechneten überein. Das beeinträchtigt die Bestimmung der Temperatur und Dichte von Plasmen. Neue sorgfältige, hoch-präzise Messungen und Berechnungen mit modernsten Methoden schließen nun alle bisher vorgeschlagenen Erklärungen für diese Diskrepanz aus und verschärfen damit das Problem.

Heiße astrophysikalische Plasmen erfüllen den intergalaktischen Raum und leuchten hell in Sternatmosphären, aktiven Galaxienkernen und Supernova-Überresten....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Alternativer Zement - Rezeptur für Öko-Beton

04.06.2020 | Architektur Bauwesen

Was Salz und Mensch verbindet

04.06.2020 | Veranstaltungsnachrichten

Unschuldig und stark oxidierend

04.06.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics