Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Timing in the Animal Realm

03.12.2012
To do the right thing in the right place at the right time: How animals accomplish this to ensure their survival is being studied at the University of Würzburg – at a new Collaborative Research Center funded by the German Research Foundation with about seven million euros.
Fruit flies always emerge from the pupal stage early in the morning when there is high humidity. In the middle of the day, their tender wings would be at too much risk of drying out before having properly hardened. An inner clock helps them not to miss the right time of emergence.

Many flowers are not opened all day long. In order to provide themselves reliably with pollen and nectar, honey bees are able to remember up to nine times of the day so that they can virtually execute a flower visiting plan. In the afternoon, for instance, they make a beeline for flowers that are only opened in the afternoon.

Desert ants make many turns in various directions when foraging for food. When they have found a food item, however, they return to the nest in the most direct way so as to get out of the life-threatening heat as fast as possible. Without satellite navigation, they are able to "calculate" the shortest route home, just using the sun as a compass.

Timing: a largely unexplored field

These examples show: Timing is everything – not only in the everyday life of humans. All organisms follow certain time schedules. This protects them from heat, cold and other unfavorable environmental conditions, ensures access to food and generally promotes their survival. In order to keep to the schedules, animals have developed various mechanisms, some of which are little known to science. These include internal clocks as well as impressive learning and memory capabilities.

Timing in the animal realm: This largely unexplored field is now being studied by researchers of the University of Würzburg at a newly established Collaborative Research Center. They are going to analyze several timing mechanisms in solitary and social insects – at the level of nervous systems, sensory and nerve cells as well as molecules. They are also examining the relevance of the timing mechanisms in terms of development, reproduction, social behavior and adaptation to the environment. The results will enable the researchers to draw conclusions about other animals and humans as well. This is because the internal clocks haven't changed much in the course of evolution.

Looking at complex biological communities

In order to determine how timing works in animals, the Würzburg biologists also examine complex biological communities in outdoor environments, such as the system "fungus – plant – aphid – ladybug": When aphids suck at certain grasses, the plants defend themselves by mixing bitter-tasting substances into their sap. The bitter substances come from a fungus that lives in symbiosis with the grasses.

Now, the aphid colony needs good timing: At which point does the sap become so unpalatable that switching to another host is worth the trouble? Incidentally, switching hosts is not that simple, requiring the ability to fly. However, the aphids solve the problem in an elegant way: When the sap of the grass becomes too bitter, they simply produce offspring endowed with wings. How does this happen? And how do the aphids react when – as a new threat in addition to the problem with the bitter sap – ladybugs, which are known to snack on the occasional louse, enter the game? This project will also be undertaken by the Würzburg scientists at the new Collaborative Research Center.

Information on the Collaborative Research Center

The studies are funded by the German Research Foundation (DFG). Over the coming four years, the foundation is going to invest about seven million euros in the Würzburg Collaborative Research Center "Insect timing: mechanisms, plasticity and interactions", which will be launched on 1 January 2013. About 70 persons participate in the program; Professor Charlotte Förster is the spokesperson. She is the chair of the Department for Neurobiology and Genetics at the Biocenter of the University of Würzburg.

Collaborative Research Centers are considered flagship projects certifying the excellent research quality of the respective universities. They are subject to a strict review procedure before being approved by the DFG; there is a fierce competition for the funds. Collaborative Research Centers are granted for an initial funding period of four years. After reviewing them anew, the DFG can extend this period by another four years with a maximum funding duration of twelve years.

Departments involved

The new Collaborative Research Center primarily concerns scientists at the Biocenter of the University of Würzburg, including the Departments of Neurobiology and Genetics, Zoology II (Behavioral Physiology and Sociobiology), Zoology III (Animal Ecology and Tropical Biology), Botany I (Molecular Plant Physiology and Biophysics) and the Departments of Biochemistry and Pharmaceutical Biology.

The Department of Physiology, the Rudolf Virchow Center for Experimental Biomedicine, the Institute for Medical Radiation and Cell Research and the Brain Research Institute of the University of Zurich are also involved.
Profiles of the participating researchers (pdf)

Contact person

Prof. Dr. Charlotte Förster, Biocenter at the University of Würzburg, T +49 (0)931 31-88823, charlotte.foerster@biozentrum.uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics