Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Temperatur-Gedächtnis der Pflanzen dauert sechs Wochen

08.06.2010
Der Klimawandel hat bei einigen Pflanzenarten die Blütezeit verschoben. Dadurch ist die Koordination mit Bestäubern wie saisonal auftretenden Insekten gestört.

Der Pflanzenbiologe Prof. Kentaro Shimizu von der Universität Zürich und seine japanischen Kollegen konnten nun zeigen, dass ein für die Blütezeit verantwortliches Gen als Gedächtnis fungiert. Dieses Gen registriert die Temperatur der letzten sechs Wochen und beeinflusst die pflanzliche Entwicklung entsprechend. Diese Erkenntnis ermöglicht es, das Blühverhalten der Pflanzen zu modellieren und mögliche Konsequenzen des Klimawandels auf pflanzliche Ökosysteme vorauszusagen.

Viele Pflanzen blühen im Frühjahr, da sie die längere Kälteperiode des vorangegangenen Winters erkennen können. Dabei müssen Pflanzen unempfindlich sein gegenüber kurzfristig schwankenden Temperaturen, wie sie aufgrund des Tag-Nacht-Rhythmus oder von Wetterveränderungen über mehrere Tage respektive Wochen auftreten. Diese Temperaturschwankungen sind oft dem saisonalen Trend entgegenlaufend und müssen als solche erkannt werden. Ohne ein Langzeitgedächtnis für vorangegangene Temperaturen wäre es für Pflanzen schwierig, die richtige Saison für die Blüte zu erkennen.

Der Pflanzenbiologe Prof. Kentaro Shimizu und sein Doktorand Masaki Kobayashi von der Universität Zürich haben nun in Zusammenarbeit mit einem japanischen Forscherteam einen Weg gefunden, den internen Status von Pflanzen zu messen. Dabei bestimmten sie die Expression des für die Blüte wichtigen Gens FLC. Dieses gilt als ein Hauptschalter des blütenregulierenden Netzwerkes. Die Messungen ergaben, dass das regulatorische System dieses Gens Informationen über vorherrschende Temperaturen der letzten sechs Wochen gespeichert hat. Durch statistische Analyse über zwei Jahre hinweg zeigte sich, dass man 83 Prozent der Variation der FLC-Expression durch die Temperaturen der vorangegangenen sechs Wochen erklären kann, nicht aber durch die Temperaturen über längere oder kürzere Zeiträume.

Die Praxistauglichkeit dieses Modells konnte mit Experimenten nachgewiesen werden, in denen Pflanzen künstlich unterschiedlichen Temperaturbedingungen ausgesetzt wurden. Dabei variierte die Expression des FLC-Gens entsprechend den modellbasierten Vorhersagen. Die mathematischen Modelle, welche die genetischen Grundlagen der Blütezeit berücksichtigen, können also mithelfen, die Reaktion von Pflanzen auf den Klimawandel vorherzusagen.

Wie die Blütezeit in der Natur reguliert wird

Forschungsobjekte waren Pflanzen der Spezies Arabidopsis halleri (Hallersche Schaumkresse), die sich vom Tiefland bis hin zu alpinen Regionen in Europa und Ostasien ausgebreitet hat. Diese Art ist eine nahe Verwandte des genetischen Modellorganismus Arabidopsis thaliana (Ackerschmalwand), in welchem die genetischen Grundlagen der Blütenentwicklung ausgiebig untersucht wurden. In diesem Modell ist bekannt, dass das FLC-Gen ein Hauptschalter im Netzwerk ist, welches die Blütezeit bestimmt. Dennoch war unklar, wie die Blütezeit unter natürlichen Bedingungen reguliert wird. Denn im Gegensatz zu den sonst verwendeten Gewächshäusern gibt es in der Natur kurzfristige Temperaturschwankungen und langfristige saisonale Trends.

Als erstes isolierten die Forscher das FLC-Gen aus Arabidopsis halleri und wiesen nach, dass es auch in diesem Organismus die Blütezeit reguliert. Danach wurden von sechs in der Natur wachsenden Individuen dieser mehrjährig blühenden Spezies Gewebeproben entnommen. Und zwar über zwei Jahre hinweg jede Woche, auch unter extremen Wetterbedingungen wie Schnee, Gewitter oder Sturm. In ihrem Forschungsartikel in der Fachzeitschrift PNAS zeigen die Forscher, dass die Gedächtnis- und Pufferfunktion des FLC-Gens um die sechs Wochen dauert und somit als Filter für kurzfristige Temperaturschwankungen dient.

Literatur:
Shinichiro Aikawa, Masaki J. Kobayashi, Akiko Satake, Kentaro K. Shimizu, and Hiroshi Kudoh: Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proceedings of the National Academy of Sciences, USA, doi/10.1073/pnas.0914293107.
Kontakt:
Prof. Dr. Kentaro Shimizu, Institut für Pflanzenbiologie, Universität Zürich,
Tel. +41 44 634 82 47 oder 82 11
E-Mail: shimizu@botinst.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.uzh.ch/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die wahrscheinlich kleinsten Stabmagnete der Welt

17.10.2019 | Biowissenschaften Chemie

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungsnachrichten

Additive Fertigung von Hartmetall-Schneidwerkzeugen

17.10.2019 | Maschinenbau

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics