Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tauben beim Multitasking besser als Menschen

26.09.2017

Tauben können genauso schnell wie Menschen zwischen zwei Aufgaben hin und her wechseln – in manchen Situationen sind sie sogar noch schneller. Zu diesem Ergebnis kommen Biopsychologen, nachdem sie Vögel und Menschen mit dem gleichen Verhaltensexperiment getestet haben. Als Ursache für die leichten Vorteile der Vögel beim Multitasking vermuten die Autoren die höhere Neuronendichte im Gehirn der Tauben.

In der Zeitschrift „Current Biology“ berichten Dr. Sara Letzner und Prof. Dr. Dr. h. c. Onur Güntürkün von der Ruhr-Universität Bochum die Ergebnisse gemeinsam mit Prof. Dr. Christian Beste vom Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden.


Der Abstand von Nervenzellen ist bei Tauben halb so groß wie bei Menschen. Wenn Gruppen von Nervenzellen immer wieder Informationen sehr schnell austauschen müssen, sind Tauben schneller.

© Onur Güntükürn


Sara Letzner ließ Menschen im Verhaltensexperiment gegen Tauben antreten.

© RUB, Marquard

„Lange Zeit hat man geglaubt, dass die sechsschichtige Großhirnrinde von Säugern der anatomische Ursprung der kognitiven Fähigkeiten ist“, sagt Sara Letzner. Vögel besitzen eine solche Struktur aber nicht. „Also kann der Aufbau des Säuger-Kortex auch nicht die Voraussetzung für komplexe kognitive Funktionen wie etwa Multitasking sein“, so Letzner weiter.

Sechsmal dichter gepackt

Der Gehirnmantel von Vögeln, das Pallium, besitzt zwar keine Schichten, die mit dem menschlichen Kortex vergleichbar sind. Dafür sind die Neuronen darin dichter gepackt als in der menschlichen Großhirnrinde: Pro Kubikmillimeter Gehirn besitzen zum Beispiel Tauben sechsmal mehr Nervenzellen als Menschen.

Dadurch ist die durchschnittliche Distanz zwischen zwei Neuronen bei Tauben nur halb so groß wie bei Menschen. Da die Signale von Nervenzellen bei Vögeln und Säugetieren gleich schnell weitergeleitet werden, hatten die Forscher angenommen, dass im Vogelgehirn Informationen schneller verarbeitet werden können als bei Säugern.

Diese Hypothese prüften sie mit einer Multitasking-Aufgabe, die 15 Menschen und 12 Tauben absolvierten. Die menschlichen und tierischen Probanden mussten im Versuch eine gerade ablaufende Handlung stoppen und so schnell wie möglich zu einer Alternativhandlung wechseln. Der Wechsel zur Alternativhandlung fand dabei entweder gleichzeitig mit dem Abstoppen der ersten Handlung statt oder mit einer kurzen Verzögerung von 300 Millisekunden.

Was Tauben schneller macht

Im ersten Fall findet echtes Multitasking statt, es laufen also zwei Prozesse parallel im Gehirn ab: nämlich das Abstoppen der ersten Handlung und der Wechsel zur Alternativhandlung. Sowohl Tauben als auch Menschen werden durch die Doppelbelastung dabei in gleichem Maße langsamer.

Im zweiten Fall – Wechsel zur Alternativhandlung nach Verzögerung – ändern sich aber die Abläufe im Gehirn: Die zwei Prozesse, also das Stoppen der ersten Handlung und der Wechsel zur zweiten Handlung, wechseln sich wie bei einem Pingpongspiel ab. Dafür müssen die Gruppen von Nervenzellen, die die beiden Prozesse kontrollieren, permanent Signale hin und her schicken. Die Forscherinnen und Forscher vermuteten, dass Tauben dabei aufgrund der größeren Dichte der Nervenzellen im Vorteil sein müssten. Tatsächlich waren sie 250 Millisekunden schneller als Menschen.

„In der kognitiven Neurowissenschaft ist es schon länger ein Rätsel, wie Vögel mit so kleinen Gehirnen und ohne einen Kortex so schlau sein können, dass einige von ihnen, etwa Krähen und Papageien, es kognitiv mit Schimpansen aufnehmen können“, sagt Letzner. Die Ergebnisse der aktuellen Studie geben eine Teilantwort: Gerade durch das kleine, aber mit Nervenzellen dicht gepackte Gehirn reduzieren Vögel die Verarbeitungszeiten bei Aufgaben, die eine schnelle Interaktion zwischen Gruppen von Neuronen erfordern.

Förderung

Die Studie wurde finanziell unterstützt von der Deutschen Forschungsgemeinschaft im Rahmen des Projektes „Entwicklung eines neuronalen Kausalmodells zu Mechanismen von Zielaktivierungsprozessen im ‚Multitasking‘“ (GU 227/20-1, BE4045/20-1) sowie durch den SFB 874 und den SFB 940, Projekt B8.

Originalveröffentlichung

Sara Letzner, Onur Güntürkün, Christian Beste: How birds outperform humans in multi-component behavior, in: Current Biology, 2017, DOI: 10.1016/j.cub.2017.07.056

Pressekontakt

Dr. Sara Letzner
Abteilung Biopsychologie
Fakultät für Psychologie
Ruhr-Universität Bochum
Tel.: 0234 302 4917, 0234 32 24634
E-Mail: sara.letzner@rub.de

Prof. Dr. Onur Güntürkün
Abteilung Biopsychologie
Fakultät für Psychologie
Ruhr-Universität Bochum
Tel.: 0234 32 26213
E-Mail: onur.guentuerkuen@rub.de

Prof. Dr. Christian Beste
Kognitive Neurophysiologie, Klinik für Kinder und Jugendpsychiatrie
Universitätsklinikum Carl Gustav Carus
Technische Universität Dresden
Tel.: 0351 458 7072
E-Mail: christian.beste@uniklinikum-dresden.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: Current Biology Gehirn Großhirnrinde Nervenzellen Neuronen Tauben

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics