Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Tanz der Bakterien

31.05.2013
PTB-Mathematiker berechnen chaotische Bewegungen in sogenannten „aktiven Fluiden“

Es sieht aus wie eine ganz gewöhnliche Flüssigkeit und benimmt sich doch oftmals ungewöhnlich: ein aktives Fluid,bestehend aus einer großen Menge Bakterien und Wasser. Eine solche „Bakterienflüssigkeit“ strömt unter Bedingungen, bei denen man laminare Strömungen erwarten sollte, chaotisch und mit Wirbeln durchsetzt.


Darstellung von Geschwindigkeitsbahnen in der 3D-Simulation. Der rote Pfeil zeigt kollektives Schwimmen, bei dem viele Bakterien sich gleichzeitig sehr schnell bewegen. Dies ist eine Eigenschaft, die sich bei „normalen“ Flüssigkeiten nicht beobachten lässt.
(Abb.: PTB)


Darstellung der Isoenergieflächen innerhalb der Simulationsbox in der turbulenten Phase.
(Abb.: PTB)

Forscher der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Cambridge in England haben jetzt gemeinsam ein theoretisches Modell entwickelt, mit dem sich solche Bewegungen berechnen lassen. Ihre Ergebnisse sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht.

Bakterien sind überall auf der Erde von immenser Bedeutung: Sie halten die Bodenstruktur aufrecht, kontrollieren die Biochemie und Photosynthese in den Ozeanen oder reinigen verseuchte Böden – um nur einige Beispiele zu nennen. Und doch ist über manche Eigenschaften dieser Organismen, die zu den ältesten und artenreichsten Lebensformen der Erde gehören, erstaunlich wenig bekannt. Dazu gehört auch ihr Fließverhalten. Um effizienter vorwärtszukommen, tun sich Bakterien nämlich gerne zusammen und machen sich gemeinsam auf die Reise. In hochorganisierten, kollektiven Schwarmbewegungen können sie große Entfernungen zurücklegen.

Dieses Verhalten bietet große Vorteile gegenüber dem Leben als einzelnes Individuum: Eine ganze Kolonie von Bakterien hat es leichter, in schwierigen Umgebungen zu überleben, Nahrung zu suchen oder neues Terrain zu erobern. Wenn sich eine solche Bakterienkolonie fortbewegt, dann ähnelt sie von außen betrachtet einer Flüssigkeit, weshalb man das Ganze auch „aktives Fluid“ nennt. Doch untersucht man das Fließverhalten genauer, dann offenbaren sich erstaunliche Unterschiede: Dort, wo eine echte Flüssigkeit laminar, also störungsfrei fließt, zeigen sich in der bakteriellen „Flüssigkeit“ chaotische Strömungen und Wirbel.

Es herrscht also letztlich eine ganz andere Fließdynamik. Das liegt daran, dass die Bewegung anders in Gang gebracht wird: Bei einer normalen Flüssigkeit sind es Einflüsse von außen, bei Bakterien dagegen stammt der Antrieb aus dem tiefen Inneren der Bakterienflüssigkeit, nämlich von den vielen Millionen Flagellen oder Geißeln. Das sind fadenförmige Gebilde auf der Bakterien-Oberfläche, die ihrer Fortbewegung dienen.

Dass sich Mathematiker der PTB mit Flüssigkeiten beschäftigen, hat einen triftigen Grund: Ihre Simulationsrechnungen könnten gleich für mehrere Industriezweige wichtig sein. So hat die Beschreibung normaler Flüssigkeiten durch die Navier-Stokes-Gleichung für die industrielle Anwendung eine enorme Bedeutung, wie an der Verwendung von Simulationen zur Fluid-Struktur-Wechselwirkung oder im Zusammenhang mit Durchflussmessungen sichtbar wird. Das Verständnis und die Simulation der neuartigen Klasse von aktiven Flüssigkeiten stellen einen wichtigen ersten Schritt zu einer Vielzahl von zukünftigen Anwendungen dar. Beispielsweise könnten einer Flüssigkeit Mikroschwimmer zugefügt und so deren Fließeigenschaften gezielt manipuliert, effektiv durchmischt oder Medikamente im Körper transportiert werden. Obwohl das kollektive Verhalten von Mikroschwimmern Gegenstand der aktuellen Forschung ist, weiß man noch zu wenig über die Eigenschaften aktiver Fluide. Insbesondere sind die entwickelten Modelle sehr kompliziert und benötigen viele Parameter, was den quantitativen Vergleich mit Experimenten unmöglich macht.

PTB-Wissenschaftler und Wissenschaftler der University of Cambridge haben zusammen eine einfache Erweiterung der Navier-Stokes-Gleichung für aktive Flüssigkeiten vorgeschlagen, die auch ohne äußere Einflüsse instabil wird. In der Veröffentlichung werden dreidimensionale Simulationen (PTB) des Models mit Experimenten von dichten Bacillus-Subtilis-Suspensionen (Cambridge, Princeton) quantitativ verglichen. Erstmals konnten ein Modell mit experimentellen Daten verglichen und Modellparameter bestimmt werden. So lassen sich schwer zugängliche physikalische Größen wie z. B. die Elastizität oder anisotrope Viskosität der aktiven Flüssigkeit indirekt messen.

Die Ergebnisse der internationalen Forschergruppe werden sicherlich interessante neue Untersuchungen nach sich ziehen, um die Entstehung von kollektivem Verhalten noch eingehender kennenzulernen, und möglicherweise künftige praktische Anwendungen anstoßen.
es/ptb)

Ansprechpartner:
Dr. Sebastian Heidenreich, PTB-Arbeitsgruppe 8.41 Modellierung und Simulation, Telefon: (030) 3481-7726, E-Mail: sebastian.heidenreich@ptb.de

Wissenschaftliche Originalveröffentlichung:
J. Dunkel (Cambridge), S. Heidenreich (PTB), K. Drescher (Princeton), H. H. Wensink (Paris), M. Bär (PTB), R. E. Goldstein (Cambridge): Fluid Dynamics of Bacterial Turbulence. Physical Review Letters 110, 228102 (2013, http://prl.aps.org/abstract/PRL/v110/i22/e228102

Erika Schow | PTB
Weitere Informationen:
http://www.ptb.de/de/aktuelles/archiv/presseinfos/pi2013/pitext/pi130531.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblicke in den Ursprung des Lebens: Wie sich die ersten Protozellen teilten
19.02.2020 | Universität Augsburg

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics