Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Systeme stabil halten

21.06.2019

Sowohl die Natur als auch die Technik sind auf integrierende Feedback-Mechanismen angewiesen. Sie sorgen dafür, dass Systeme stabil bleiben. ETH-Forschende haben nun mittels synthetischer Biologie einen solchen Mechanismus von Grund auf neuentwickelt und erstmals als künstliches Gen-Netzwerk in eine lebende Zelle eingebaut. Hilfreich ist das für die Zelltherapie in der Medizin und für die Biotechnologie.

Der menschliche Körper sorgt dafür, dass die Kalziumkonzentration im Blut konstant bleibt. Ebenso hält der Autopilot ein Verkehrsflugzeug auf konstanter Flughöhe. Diese beiden Beispiele haben Gemeinsamkeiten:


Die Wissenschaftler entwickelten einen integrierenden Regelkreis (vorne als Schaltplan dargestellt) für Kolibakterien.

ETH Zürich / Christine Khammash

Körper und Autopilot verwenden dazu ausgeklügelte, sogenannte integrierende Feedback-Mechanismen (siehe Kasten). Forschenden am Departement für Biosysteme der ETH Zürich in Basel ist es nun gelungen, einen solchen integrierenden Regelkreis erstmals in einer lebenden Zelle von Grund auf neu zu bauen, wie sie in der aktuellen Ausgabe der Zeitschrift Nature [http://dx.doi.org/10.1038/s41586-019-1321-1] berichten.

Mit ihrem Ansatz der synthetischen Biologie könnte es in Zukunft unter anderem möglich werden, biotechnologische Produktionsprozesse zu optimieren und Patienten mit Hormonstörungen mittels Zelltherapie zu helfen.

Trotz Umwelteinflüssen konstant

Erste technische Formen von integrierenden Feedback-Regelungen wurden vor über hundert Jahren von Schifffahrtsingenieuren entwickelt, um Schiffssteuerungen zu automatisieren.

Seither kommt dieses Regelungsprinzip überall dort zum Einsatz, wo es darum geht, beispielsweise eine Richtung, Temperatur, Geschwindigkeit oder Höhe konstant und gegenüber äusseren Einflüssen stabil zu halten. Das Spezielle an einer integrierenden Regelung ist, dass die entsprechenden Korrekturen sowohl von der Höhe als auch der Dauer der Abweichung vom gewünschten Wert abhängig sind.

Auch in der Biologie sind während der Evolution Mechanismen entstanden, um zum Beispiel die Konzentration von Stoffen im Blut konstant zu halten. Dass es sich dabei ebenfalls um integrierende Regelkreise handelt, haben Forschende um Mustafa Khammash, Professor am Departement für Biosysteme, bereits vor einigen Jahren gezeigt.

«Solche integrierenden Regelkreise sind äusserst resistent gegenüber unvorhergesehenen Umwelteinflüssen», erklärt der ETH-Professor. «Dies dürfte erklären, warum sich das Prinzip in der Evolution durchgesetzt hat, und warum es in der Technik so oft angewandt wird.»

Zusammenspiel zweier Moleküle

Khammash und seinem interdisziplinären Team von Regelungstheoretikern, Mathematikern und Biologen ist es nun gelungen, einen solchen integrierenden Feedback-Regelkreis erstmals als synthetisches Gen-Netzwerk in einem Bakterium aufzubauen.

Ihr Feedback-Mechanismus fusst auf zwei Molekülen – A und B –, die sich aneinanderheften und auf diese Weise inaktiviert werden. Diese beiden Moleküle sind in der Lage, die Konzentration eines dritten Moleküls C konstant zu halten: Das System ist so aufgebaut, dass das Molekül B die Produktion von C fördert und die Produktionsrate von A von der Konzentration von C abhängig ist. Die Feedback-Schleife: Ist viel C vorhanden, wird mehr A produziert und somit mehr B inaktiviert, wodurch weniger C produziert wird.

Im Rahmen eines Machbarkeitsnachweises nutzten die ETH-Wissenschaftler dieses Prinzip, um die Herstellung eines in Kolibakterien eingeschleusten grün fluoreszierenden Proteins zu steuern.

Dank des Feedback-Regelkreises stellten die Bakterien ständig gleich viel des Fluoreszenzfarbstoffs her und zwar auch dann, als die Wissenschaftler zu Testzwecken mit Hemmstoffen die Produktion des Farbstoffs zu dämpfen versuchten.

In einem zweiten Experiment gelang es den Forschenden, eine Bakterienpopulation herzustellen, die mit konstanter Rate wuchs, das sogar noch, als die Wissenschaftler das Wachstum zu Testzwecken zu stören versuchten.

Biotech und Therapien verbessern

Dereinst zum Einsatz kommen könnte der neue Regelmechanismus in der Biotechnologie bei Bakterien, mit welchen Vitamine, Medikamente, Chemikalien oder Biotreibstoffe hergestellt werden. Der Mechanismus könnte dabei verwendet werden, um die Produktionsrate der Bakterien konstant auf einem optimalen Niveau zu halten.

Die ETH-Wissenschaftler sind nun auch daran, einen vergleichbaren Regelmechanismus für Säugetierzellen zu entwickeln, was weitere Anwendungen ermöglichen könnte.

Dazu gehören Designerzellen mit genetischen Netzwerken, die im Körper von Patienten Hormone produzieren. Profitieren könnten davon beispielsweise Menschen mit Diabetes oder einer Schilddrüsenunterfunktion.

Auch könnte man die synthetischen Regelkreise nutzen, um die Immuntherapie von Krebs zu verbessern. «Bei dieser Therapieform müssen Immunzellen genügend aktiv sein, um den Tumor bekämpfen zu können, jedoch nicht überaktiv, wodurch sie gesundes Gewebe schädigen würden», erklärt Khammash. «Mit einem Mechanismus wie dem unsrigen könnte man die Aktivität feinregulieren.»

[Kasten:]

Integrierender Regelkreis

Die Steuerung der Kalziumkonzentration im Blut sei ein gutes Beispiel, um das Prinzip von integrierenden Regelkreisen in der Biologie zu erklären, sagt ETH-Professor Mustafa Khammash. Diese Konzentration wird auf konstant rund 95 Milligramm pro Liter Blut reguliert und zwar unabhängig davon, wie viel Kalzium eine Person über die Nahrung zu sich nimmt, und beispielsweise auch dann, wenn der Körper einer stillenden Frau für die Muttermilchproduktion sehr viel Kalzium aus dem Blut bezieht. «Ein konstanter Kalziumspiegel ist wichtig, denn viele physiologische Prozesse sind darauf angewiesen, beispielsweise die Funktionen von Muskeln und Nerven und die Blutgerinnung», erklärt Khammash.

Das Hormon Paratyrin wirkt im Körper als einer von zwei Feedback-Regulatoren: Paratyrin fördert die Mobilisierung von Kalzium aus dem Knochengewebe ins Blut. Je tiefer die Kalzium-Konzentration im Blut, desto mehr Paratyrin wird in den Nebenschilddrüsen produziert. «Auf diese Weise werden zu tiefe Kalzium-Werte teilweise ausgeglichen», sagt Khammash.

Um die Konzentration auch nach grossen Ausschlägen gegen oben oder unten vollständig auf den Sollwert zurückzubringen, brauche es allerdings einen zweiten Mechanismus, erklärt Khammash. Diese Rolle übernimmt eine biologisch aktive Form von Vitamin D3, welche die Aufnahme von Kalzium aus dem Nahrungsbrei im Dünndarm ins Blut fördert. Die Produktion dieser aktiven Form von Vitamin D3 in den Nieren ist allerdings von der Paratyrin-Konzentration abhängig.

Gemeinsam sorgen die beiden Hormone dafür, dass die Blutkonzentration im zeitlichen Verlauf möglichst wenig und möglichst nur kurzzeitig von der Soll-Konzentration abweicht – oder mit anderen Worten: die «über die Zeit integrierte Abweichung» konstant ist, wie es ein Mathematiker ausdrücken würde. Daher der Name integrierender Regelkreis.

Originalpublikation:

Aoki SK, Lillacci G, Gupta A, Baumschlager A, Schweingruber D, Khammash M: A universal biomolecular integral feedback controller for robust perfect adaptation, Nature, 19. Juni 2019, doi: 10.1038/s41586-019-1321-1 [http://dx.doi.org/10.1038/s41586-019-1321-1]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/06/systeme-st...

Hochschulkommunikation | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: Bakterien Biologie Blut D3 ETH Evolution Kalzium Moleküle Regelkreis Vitamin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bayerisch-tschechisches Forschungsprojekt trägt zum Schutz der Bienen bei
15.07.2019 | Universität Regensburg

nachricht Biobasierte Dünger sollen künftig Mineraldünger ersetzen
12.07.2019 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Was die Kraftwerke der Zelle in Form hält

Ein Team aus Deutschland und der Schweiz um Professor Oliver Daumke vom MDC hat untersucht, wie ein Protein der Dynamin-Familie die innere Membran der Mitochondrien verformt. Die Ergebnisse, die auch Einblicke in erbliche Erkrankungen des Sehnervs liefern, sind im Journal „Nature“ veröffentlicht.

Mitochondrien sind die Kraftwerke unserer Zellen. Hier wird Energie in Form chemischer Verbindungen wie ATP gewonnen. Um dieser Aufgabe optimal nachgehen zu...

Im Focus: Knobeln auf dem Quanten-Schachbrett

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungsnachrichten

Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

15.07.2019 | Physik Astronomie

Verfahren zum Patent angemeldet: Katalysator-Herstellung in einem Schritt

15.07.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics