Synthese im lebenden Organismus sichtbar machen

Zebrafisch-Larve mit F-ara-Edu markiert<br>Bild: UZH<br>

Mit Hilfe dieses Verfahrens können Virusinfektionen oder Gewebewucherungen, wie sie bei der Krebsentstehung vorkommen, identifiziert und neue Wege bei der Medikamentenentwicklung eingeschlagen werden.

Viele zentrale Lebensvorgänge in den Zellen erfordern die Interaktion biologischer Makromoleküle. Makromoleküle entstehen in lebenden Zellen durch die Verkettung vieler kleiner Moleküle. Natürlich vorkommende Makromoleküle sind beispielsweise die Erbsubstanz DNS oder Eiweisse. Die Erforschung der Entstehung dieser Biomoleküle im lebenden Organismus ist eine wichtige Voraussetzung, um grundlegende Lebensvorgänge zu verstehen und neue Medikamente entwickeln zu können.

Um die Synthese von Biomolekülen in einem ganzen Organismus sichtbar zu machen, baut man synthetische Moleküle mittels zelleigener Biosynthese in die DNS ein und markiert sie anschliessend mit fluoreszierenden Substanzen. Bis anhin hatte dieses Verfahren jedoch einen grossen Nachteil: Die für die Markierung verwendeten Substanzen waren toxisch und destabilisierten die DNS, was häufig den Zelltod oder einen Wachstumsstopp der Zelle auslöste.

Neuer sensitiver Marker
Nun hat die Doktorandin Anne Neef vom Organisch-chemischen Institut der Universität Zürich eine neue Substanz entwickelt, die das natürliche Nucleosid Thymidin in der DNS-Synthese ersetzen kann. Dieses Nucleosid mit dem Namen «F-ara-Edu» markiert die DNS mit nur geringem oder keinem Einfluss auf die DNS-Funktionen in der lebenden Zelle. Es stoppt das Zellwachstum nicht und ist im Vergleich zu anderen Substanzen um einiges sensitiver. «F-ara-Edu» eignet sich daher hervorragend für Experimente mit der DNS-Synthese im lebenden Organismus. «Wir haben F-ara-Edu in Zebrafischeier unmittelbar nach deren Befruchtung zugegeben. Somit konnten wir die Entwicklung der Fische von der allerersten Zelldifferenzierung bis zum Schlüpfen beobachten», erklärt Prof. Nathan Luedtke, der die Forschungsarbeit von Anne Neef leitet. «Mit Hilfe der Visualisierung in lebenden Tieren können Virusinfektionen und Krebsgewebe identifiziert werden, da in diesen Geweben die DNS-Synthese der Zellen deutlich erhöht ist», fügt Luedtke hinzu. Damit eröffnen sich neue Möglichkeiten für die Entwicklung neuer Medikamente.
Literatur:
Anne Brigitte Neef, Nathan William Luedtke. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proceedings of the National Academy of Sciences of the United States of America. PNAS. November 29, 2011. doi:10.1073/pnas.1101126108

Media Contact

Nathalie Huber idw

Weitere Informationen:

http://www.mediadesk.uzh.ch/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer