Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Symbionten als Lebensretter

14.05.2019

ForscherInnen entdecken neuen Faktor bei der Verbreitung von Legionellen

Wenn Menschen an einer bakteriellen Infektion erkranken, steht zunächst die Behandlung der Erkrankung im Vordergrund. Aber woher kommen diese Krankheitserreger eigentlich und wo leben sie, wenn Sie nicht im Zusammenhang mit einer Infektion in Erscheinung treten?


Legionellen (pink eingefärbt) vermehren sich bevorzugt in Amöben (hellblau). Diese ca. 50 µm großen Einzeller beherbergen häufig bakterielle Endosymbionten (grün).

© Cecilia Wentrup


Lena König, Erstautorin der Studie und Doktorandin am Zentrum für Mikrobiologie und Umweltsystemwissenschaft.

© privat

Ein internationales Team um Matthias Horn vom Zentrum für Mikrobiologie und Umweltsystemwissenschaft der Universität Wien hat dies am Beispiel eines Erregers von Lungenerkrankungen untersucht. Die Ergebnisse ihrer Studie erscheinen aktuell in der Fachzeitschrift mBio.

Legionella pneumophila heißt der Erreger der Legionärskrankheit (Legionellose), einer atypischen Lungenentzündung, der für gesunde Menschen eher harmlos ist, bei Menschen mit geschwächtem Immunsystem aber lebensbedrohlich sein kann.

Die Anzahl an Erkrankungen durch Legionellen ist in den 2000er Jahren weltweit stetig gestiegen, mit zuletzt 228 registrierten Fällen und 10 Todesfällen in 2017 in Österreich. Der letzte große Ausbruch in Europa ereignete sich im September 2018 in der italienischen Stadt Brescia. Über 400 Patienten erkrankten an Lungenentzündung und wurden im Spital behandelt.

Der natürliche Lebensraum der Legionellen sind Sedimente von Seen und Flüssen, sie kommen aber auch in Wasserleitungssystemen vor. "Dort vermehren sie sich in Einzellern, die sie anschließend zerstören. Genau diese Eigenschaft erlaubt Legionellen auch die Infektion des Menschen. Zur Erkrankung kommt es in der Regel erst nachdem sich Legionellen in Einzellern vermehrt haben", erklärt Matthias Horn vom neu gegründeten Zentrum für Mikrobiologie und Umweltsystemwissenschaft, der gemeinsam mit seinem Team und WissenschafterInnen des renommierten Institut Pasteur und der University of Michigan das Leben der Legionellen in Einzellern untersucht hat.

Schutz vor Krankheitserregern

Mit der Fähigkeit in Einzellern zu überleben sind Legionellen nicht allein. Einzeller beherbergen häufig andere Bakterien, die ihnen jedoch nicht schaden, sogenannte Endosymbionten. Das ForscherInnenteam hat nun herausgefunden, dass diese Bakterien maßgeblich die Vermehrung und Verbreitung von Legionellen beeinflussen. In zahlreichen Experimenten konnten Sie nachweisen, dass Legionellen sich weniger gut in Amöben vermehren können, wenn diese Endosymbionten enthalten.

Erstaunlicherweise überleben dabei die meisten Amöben mit Endosymbionten die ansonsten letale Infektion mit Legionellen. "Jene Bakterien, die sich vorher in Amöben mit Endosymbionten vermehrt hatten, waren deutlich weniger infektiös, konnten also weit weniger effizient neue Amöben attackieren", berichtet Lena König, Erstautorin der Studie und Doktorandin am Zentrum für Mikrobiologie und Umweltsystemwissenschaft.

Dem molekularen Mechanismus auf der Spur
Um besser zu verstehen, was innerhalb von Amöben passiert, die zeitgleich Endosymbionten beherbergen und von Legionellen infiziert werden, haben sich die WissenschafterInnen die Genexpression beider Bakterien genauer angesehen.

"Die RNA-Sequenzierung erlaubt Rückschlüsse auf biologische Ereignisse, die sich innerhalb der Einzeller abspielen", erklärt Cecilia Wentrup, die als Postdoktorandin maßgeblich am Projekt beteiligt war. König ergänzt: "Dabei haben wir eine Erklärung für die Reduktion der Infektiosität der Legionellen gefunden. Diese scheinen nämlich den natürlichen Endosymbionten der Amöben in der Konkurrenz um Nährstoffe zu unterliegen, die beide von den Einzellern benötigen." Die Folge: Legionellen vermehren sich langsamer und können für die Infektion von Amöbe und Mensch notwendige Faktoren nicht produzieren. Die Krankheitserreger sind beispielsweise nicht beweglich und es fehlen ihnen wichtige Speicherstoffe.

Vom Labor in die Umwelt

Eine weitere Beobachtung ließ die ForscherInnen aufhorchen. Der Wachstumsstopp funktionierte nicht nur mit den üblicherweise verwendeten Laborstämmen, sondern auch mit frisch aus der Umwelt gewonnenen Amöben, sowie mit kürzlich isolierten Legionellen. Endosymbionten von Amöben sind also nicht nur unter Laborbedingungen, sondern vermutlich auch in der Umwelt ein wichtiger Faktor bei der Vermehrung und Verbreitung von Legionellen. Dies erscheint insbesondere deshalb interessant, da die meisten Einzeller unter natürlichen Bedingungen bakterielle Symbionten tragen. Die aktuelle Studie leistet damit einen wichtigen Beitrag zu einem besseren Verständnis der Lebensweise dieser bakteriellen Krankheitserreger in der Umwelt.

Das Projekt wurde an der Universität Wien im Rahmen des FWF-Projekts "Eukaryotic genes in vacuolar pathogens and symbionts (EUGENPATH)" und eines Marie Skłodowska-Curie Individual Fellowship-Stipendiums durchgeführt.

Publikation in mBio:
Lena König, Cecilia Wentrup, Frederik Schulz, Florian Wascher, Sarah Escola, Michele S. Swanson, Carmen Buchrieser, Matthias Horn. 2019. Symbiont-mediated defense against Legionella pneumophila in amoebae.
DOI: 10.1128/mBio.00333-19

Wissenschaftliche Ansprechpartner:

Univ.-Prof. Dr. Matthias Horn
Department für Mikrobielle Ökologie
Universität Wien
1090 - Wien, Althanstraße 14
+43-1-4277-543 93
matthias.horn@univie.ac.at

Originalpublikation:

https://mbio.asm.org/content/10/3/e00333-19

Stephan Brodicky | Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics