Supercomputer liefert neue Einblicke in die Funktion von Glutamat-Transportern

Glutamat-Transporter EAAT1 mit Andockstellen für K+-Ionen (K1-K4) Copyright: Kortzak et al., DOI 10.15252/embj.2019101468 (CC BY 4.0)

Glutamat ist der am häufigsten vorkommende Neurotransmitter im zentralen Nervensystem. Er sorgt dafür, dass Signale von einer Nervenzelle zur anderen übertragen werden.

Zu hohe Glutamat-Konzentrationen sind allerdings schädlich und können zum Absterben der Nervenzellen führen. Deswegen ist der Abtransport durch spezialisierte Moleküle in der Zellmembran, nämlich durch EAAT Glutamat-Transporter, wichtig.

Die EAATs sind sekundär-aktive Transporter, die das Konzentrationsgefälle anderer Teilchen nutzen, um die Glutamataufnahme anzutreiben. Die Transporter binden dazu den Neurotransmitter Glutamat an der Außenseite der Zelle zusammen mit drei Natriumionen, und verfrachten alles zusammen in das Zellinnere.

Das natürliche Gefälle der Natrium-Konzentration, die außerhalb der Zelle deutlich höher ist als im Inneren, wirkt so als treibende Kraft, um Glutamat in die Zelle zu befördern.

Bislang war nicht verstanden, wie sich das Transporter-Molekül danach wieder zurückbewegt, um weitere Glutamat-Moleküle aufzunehmen. Die Jülicher Forscher haben diese Frage mit Computersimulationen und Experimenten nun beantwortet. Sie konnten zeigen, wie Kalium-Ionen an den Transporter binden und den Glutamat-Transport aufgrund des vorherrschenden Konzentrationsgefälles beschleunigen.

Der Effekt der Kaliumkopplung zeigt sich unter anderem im Vergleich mit verwandten bakteriellen Formen des Proteins, bei denen der Transport nicht von Kalium abhängig ist. Dieser Unterschied, der im Laufe der Evolution als Ergebnis einer umfassenden Optimierung entstanden ist, war ein wichtiges Hilfsmittel, um den Mechanismus zu verstehen.

Die Erkenntnisse könnten hilfreich sein, um neue Behandlungsverfahren für ischämische Hirnerkrankungen wie dem Schlaganfall zu entwickeln, bei denen erhöhte Glutamat-Konzentrationen auftreten können.

Prof. Christoph Fahlke
Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)
Tel.: 02461 61-3016
E-Mail: c.fahlke@fz-juelich.de

Jun.-Prof. Jan-Philipp Machtens
Institute of Complex Systems, Bereich Zelluläre Biophysik (ICS-4)
Tel.: 02461 61-4043
E-Mail: j.machtens@fz-juelich.de

Allosteric gate modulation confers K+ coupling in glutamate transporters
Daniel Kortzak, Claudia Alleva, Ingo Weyand, David Ewers, Meike I Zimmermann, Arne Franzen, Jan-Philipp Machtens, Christoph Fahlke
EMBO J (2019), DOI: 10.15252/embj.2019101468 (Open Access)

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2019/fachmeldungen… Meldung des Forschungszentrums Jülich
https://doi.org/10.15252/embj.2019101468 Link zur Originalpublikation (Open Acess)

Media Contact

Dipl.-Biologin Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer