Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Super-Aktivierung an den Synapsen?

08.01.2016

Nervenzellen müssen extrem schnell reagieren und je nach Aufgabe auch ihr Tempo drosseln können. Berliner Wissenschaftler haben nun gezeigt, dass ein Rezeptor in den Synapsen gleich beides beherrscht und manifestierten mit ihrer Arbeit ein weiteres Beispiel für die erstaunliche Flexibilität des Gehirns auf molekularer Ebene.

Tag für Tag leistet das Gehirn schier Unglaubliches – ob wir nach einem Ball hechten, Schallwellen verarbeiten oder Erinnerungen über Jahrzehnte hinweg abspeichern. Möglich ist diese Bandbreite, weil Nervenzellen extrem schnell reagieren und bis zu 1000 elektrische Impulse pro Sekunde erzeugen können, aber auch viel langsamere Reaktionen im Repertoire haben, bei denen die einzelnen Impulse länger anhalten.


Super-Aktivierung von AMPA-Rezeptoren durch wiederholte Stimulation

Plested, FMP

Wieso die Nervenzellen so flexibel reagieren, wird weltweit von vielen Arbeitsgruppen erforscht. Zwei Wissenschaftler am Leibniz-Institut für Molekulare Pharmakologie in Berlin (FMP) haben nun eine überraschende Entdeckung gemacht: Flexibilität wird bereits auf Molekülebene erzeugt – der häufigste Rezeptor an unseren Synapsen kann je nach eingehendem Signal zwischen zwei verschiedenen Funktionsweisen umschalten.

Es handelt sich um den Glutamatrezeptor vom Typ AMPA, der das von benachbarten Zellen ausgeschüttete Glutamat erkennen kann. Dieser chemische Händedruck ermöglicht es den Nervenimpulsen von einer Zelle zur nächsten zu springen.

Der AMPA-Rezeptor galt seit über 30 Jahren als echter Spezialist für aufeinanderfolgende, schnelle Impulse: in weniger als einer Millisekunde kann er zwischen der geschlossenen und geöffneten Form wechseln. Anna Carbone und Andrew Plested (beide FMP und Mitglieder des Exzellenzcluster NeuroCure) haben nun gezeigt, wiederholte Aktivierungen drängen den Rezeptor in einen langsamen Modus, mit zugleich hoher Aktivität. In diesem Zustand der Super-Aktivierung kann er bis zu einer Sekunde geöffnet bleiben.

Der Ursprung ihrer Forschungsarbeit war vor vielen Jahren die Zufallsmutation einer Labormaus. Die „Sternengucker-Maus“ war zuerst durch ihre epileptischen Anfälle aufgefallen, bei denen sie mitunter den Kopf hochreckt und wie in Trance nach oben schaut. Später fand man heraus, dass bei der „Sternengucker-Maus“ ein bestimmtes Protein defekt ist, das normalerweise mit dem AMPA-Rezeptor einen Komplex bildet.

Man taufte das Protein Stargazin und die beiden FMP-Forscher experimentierten damit in Zellkulturen, wie bereits viele Forscher vor ihnen. Unter unterschiedlichen Bedingungen zeichneten sie mittels des Patch-Clamp-Verfahrens den Stromfluss durch einzelne Rezeptor-Poren auf, die mit Stargazin Komplexe bildeten.

Durch gezielte Punktmutationen veränderten sie die mechanischen Eigenschaften des Rezeptors, um seiner Funktionsweise auf die Spur zu kommen. Dabei fanden sie mehrere unerwartete Formen der Aktivität. Ihr Erklärungsmodell, das jetzt in Nature Communications veröffentlicht wurde, ist einfach: Demzufolge befindet sich der AMPA-Rezeptor grundsätzlich im schnellen-Modus, kann aber durch zusätzliche Aktivierung durch das Protein Stargazin in einen langsamen Modus versetzt werden. Diese Super-Aktivierung ist eine Art Kurzzeitgedächtnis auf Molekülebene, durch die eine positive Rückkopplung entsteht.

Positive Rückkopplungsschleifen sind in der Biologie weit verbreitet und lebenswichtig, zum Beispiel der Ferguson-Reflex, der bei der Geburt dazu dient, die Wehen zu unterstützen. „Soweit ich weiß, haben wir zum ersten Mal gezeigt, dass eine positive Rückkopplungsschleife auch innerhalb eines einzigen Molekülkomplexes ablaufen kann. Der Vorteil dabei ist, dass die Super-Aktivierung sich schnell aufbaut und auch schnell wieder abbaut“, sagt Andrew Plested.

Normalerweise setzen Feedback-Schleifen erst nach Minuten oder Stunden ein. Beim AMPA-Rezeptor startet die Super-Aktivierung in weniger als einer Sekunde. „Es gab schon seit einiger Zeit Hinweise darauf, dass der AMPA-Rezeptor auch im langsamen Modus arbeiten kann, aber bis jetzt konnte sich das keiner erklären“, sagt Andrew Plested.

Die Gruppe untersucht nun mit aller Kraft, welche Rolle die Super-Aktivierung im Gehirn spielt. Ihr Modell könnte dabei helfen, Synapsen und die Plastizität des Gehirns besser zu verstehen, und es könnte langfristig dazu beitragen, neurologische Erkrankungen zu behandeln.


Quelle: Anna L. Carbone & Andrew J.R. Plested: Superactivation of AMPA receptors by auxiliary proteins. Nature Communications, DOI: 10.1038/ncomms10178.

Kontakt:

Dr. Andrew Plested
Leibniz-Institut für Molekulare Pharmakologie (FMP)
plested (at) fmp-berlin.de

Öffentlichkeitsarbeit
Leibniz-Institut für Molekulare Pharmakologie (FMP),
Robert-Rössle-Straße 10
13125 Berlin

Silke Oßwald
Tel: +49 (0)30 94793 104
Email: osswald@fmp-berlin.de

Das Leibniz-Institut für Molekulare Pharmakologie (FMP) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.900 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Silke Oßwald | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics