Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sub-Nanometer-Katalysatoren verhalten sich anders als prognostiziert: Extrapolieren verboten

28.01.2016

Zur Herstellung von Margarine werden jedes Jahr Millionen Tonnen ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff umgesetzt. Auf der Suche nach besseren Katalysatoren für solche als Hydrierung bezeichneten Reaktionen machte ein deutsch-amerikanisches Forscherteam eine Entdeckung, die eine seit mehr als 50 Jahren geltende Regel in Frage stellt: Bei Katalysatorpartikeln aus nur wenigen Atomen beeinflussen Form und Größe die Reaktivität sehr viel stärker als bisher gedacht.

Millionen Tonnen Margarine werden jährlich durch die Umsetzung ungesättigter Fettsäuren aus Pflanzenölen mit Wasserstoff hergestellt. Während die Hydrierung von Pflanzenölen mit günstigen Nickel-Katalysatoren gelingt, benötigen viele andere Reaktionen das teure Platin.


Berechnete Struktur eines Pt10-Clusters auf einer Magnesiumoxid-Oberfläche.

Bild: U. Landman, B. Yoon / Georgia Tech


Andrew Crampton und Marian Rötzer an ihrer Vakuum-Anlage zur Herstellung ultrakleiner Katalysatorpartikel

Foto: Andreas Heddergott / TUM

Da die Hydrierungsreaktion nur an der Oberfläche abläuft und die inneren Atome keine Rolle spielen, entwickelt die Industrie immer kleinere Katalysatorpartikel. Die kleinsten von ihnen enthalten inzwischen kaum mehr als 100 Atome. Bei noch kleineren Partikeln übernehmen allerdings quantenphysikalische Effekte die Regie, und die bisherigen Modelle können die Eigenschaften der Platinpartikel nicht mehr vorhersagen.

Ein Team aus Forschern der Technischen Universität München (TUM) und des Georgia Institute of Technology in Atlanta (Georgia) hat diese Effekte nun mit Atom-genauer Präzision untersucht. Als Modell nahmen sie die von Platin katalysierte Reaktion von Ethen zu Ethan. Wie die ungesättigten Fettsäuren enthält Ethen eine Kohlenstoff-Doppelbindung. Nimmt diese zwei Wasserstoffatome auf, wird Ethen zum „gesättigten“ Ethan.

Ein Modell kommt ins Wanken

Seit mehr als 50 Jahren teilen Chemiker katalytische Reaktionen in solche ein, die von der Struktur und Größe des Katalysators beeinflusst werden und solche, auf die diese Faktoren keinen Einfluss haben. „Die Ethenhydrierung galt als typisches Beispiel einer größenunabhängigen Reaktion. Wir vermuteten jedoch, dass diese Unterscheidung für Katalysatorpartikel im Sub-nanometer-Bereich nicht mehr gilt“, sagt Ulrich Heiz, Inhaber des Lehrstuhls für Physikalische Chemie der TU München, Mitglied und Akademischer Direktor des Zentralinstituts für Katalyseforschung.

Die Arbeitsgruppe von Professor Ulrich Heiz produzierte dazu Platinpartikel, die jeweils nur eine kleine Anzahl von Atomen besitzen. „Mit unserer Anlage können wir gezielt Platincluster mit einem bis 80 Platinatomen produzieren“, sagt Andrew Crampton, Mitarbeiter der Arbeitsgruppe Heiz. An diesen ließen sie Ethen und Wasserstoff miteinander reagieren und analysierten die Ergebnisse.

Die Reaktivität hängt dabei sehr stark von der genauen Anzahl an Atomen ab. Cluster mit weniger als zehn Atomen waren kaum aktiv. Ab zehn Atomen wächst die Reaktivität bis zu einem Maximum bei Clustern aus 13 Atomen. Sie besitzen eine deutlich höhere Reaktivität als eine normale Platinoberfläche – ein klarer Beleg dafür, dass die in den letzten Jahrzehnten für diese Reaktion postulierte Größenunabhängigkeit nicht korrekt war.

Untermauert werden die experimentellen Beobachtungen durch die von den amerikanischen Kollegen entwickelten theoretischen Modelle. Sie erlauben nun eine präzise Aussage darüber, welches Atom warum für welche Aktivität verantwortlich ist. „So kleine Cluster verhalten sich nicht mehr wie Metallkörper sondern wie Moleküle: Small is different“, sagt Uzi Landman, Professor am Center for Computational Materials Science des Georgia Institute of Technology. „Die Eigenschaften hängen eindeutig von der Anzahl der Atome ab.“

Ein eingespieltes Ensemble

Wie beim bekannten Tangram-Spiel können sich die Atome der kleinen Cluster zu verschiedenen Formen zusammen finden, sogenannte Isomere. Außerdem spielen bei Clustern mit wenigen Atomen auch die Wechselwirkungen mit den Atomen des Trägermaterials eine wichtige Rolle.

Inzwischen haben die Münchener Chemiker verschiedene Verfahren entwickelt, wie sie die kleinen Platincluster auf Trägermaterialien fixieren können. „Wir verhindern damit, dass sich die kleinen Partikel zu größeren zusammenlagern“, erläutert Ulrich Heiz. „Die Oberfläche wiederum beeinflusst, welche Form die Cluster bevorzugt annehmen. Zusammen mit der Clustergröße haben wir damit ein Instrumentarium, die Eigenschaften für eine bestimmte Reaktion maßzuschneidern.“

Zusammen mit weiteren Mitgliedern des Zentralinstituts für Katalyseforschung wollen die Wissenschaftler in naher Zukunft nasschemische Verfahren entwickeln, mit denen effizient größere Mengen kleiner Platincluster mit einer genau definierten Anzahl von Atomen produziert werden können.

Die Arbeiten wurden unterstützt mit Mitteln des European Research Council (ERC), der Deutschen Forschungsgemeinschaft (DFG), des US Air Force Office for Scientific Research (AFOSR) und des US Department of Energy (DOE).

Publikation:

Structure sensitivity in the nanoscalable regime: catalyzed ethylene hydrogenation on supported Pt nanoclusters; Andrew S. Crampton, Marian D. Rötzer, Claron J. Ridge, Florian F. Schweinberger, Ueli Heiz, Bokwon Yoon, Uzi Landman:
nature communications, 28. Jan 2015, DOI: 10.1038/ncomms10389

Kontakt:

Prof. Dr. Ulrich Heiz
Technische Universität München
Zentralinstitut für Katalyseforschung
Ernst-Otto-Fischer-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 13390 – E-Mail: ulrich.heiz@mytum.de

Weitere Informationen:

http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32893/
http://www.pc.ch.tum.de
http://www.crc.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blasentang zeigt gekoppelte Reaktionen auf Umweltveränderungen
15.10.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Nachweis erbracht: Genmutation in Chloridkanal löst Hyperaldosteronismus aus
15.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Immer im richtigen Takt: Ultrakurze Lichtblitze unter optischer Kontrolle

15.10.2019 | Physik Astronomie

„Tanzmuster“ von Skyrmionen vermessen

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics