Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturlosigkeit erleichtert Proteinsynthese

28.06.2011
Gut zugänglicher Startpunkt auf der Boten-RNA erhöht die Bildung von Proteinen

Texte ohne Leerzeichen sind schwer lesbar, da der Leser Anfang und Ende eines Wortes kaum erkennen kann. Wenn in unseren Zellen die Erbinformation abgelesen und in Proteine übersetzt wird, werden die dafür verantwortlichen Enzyme mit einer ähnlichen Herausforderung konfrontiert. Sie müssen den richtigen Startpunkt für die Proteinsynthese finden.


Mechanismus der Erkennung eines AUG-Startcodons durch das Ribosom (blau) in Abwesenheit einer Shine-Dalgarno-Sequenz. Das korrekte Start-AUG (grün) unterscheidet sich von allen anderen AUG-Tripletts (rot) durch seine Lage in einer einzelsträngigen (unstrukturierten) Region der Boten-RNA (schwarze Linie). Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam

Gene von Lebewesen ohne echten Zellkern besitzen deshalb kurz vor dem Lese-Start-Codon eine Stelle, an welche die Ablese-Proteine besonders gut binden und die somit beim Auffinden des Startpunkts behilflich ist. Doch auch Gene, die diese Sequenz nicht haben, werden trotzdem verlässlich in Proteine übersetzt. Wissenschaftler vom Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam haben jetzt herausgefunden, dass dafür vermutlich die Struktur der Boten-RNA von entscheidender Bedeutung ist.

Die DNA von zellkernlosen Organismen besteht aus den vier Basen Adenin, Cytosin, Thymin und Guanin, die entsprechend mit den Buchstaben A, C, T, G abgekürzt werden. Bei der RNA ist Thymin durch Uracil (U) ersetzt. Die Basen sind über ihr Zucker-Phosphat-Rückgrat miteinander verknüpft. Sie sind mit den Buchstaben unserer Sprache vergleichbar, die man zu Wörtern zusammensetzen kann. In der DNA-Sprache kodieren jeweils drei Basen, sogenannte Tripletts, eine der 20 Aminosäuren, aus denen alle unsere Proteine aufgebaut sind. Da es zwischen den Tripletts in der DNA keine Leerzeichen gibt, ist es schwierig, die drei zu einem Triplett gehörenden Basen zu erkennen und vor allem den Startpunkt für die Proteinsynthese auf dem Nukleinsäurestrang auszumachen.

Bevor Proteine hergestellt werden können, wird die DNA in ihre Transportform, die Boten-RNA (mRNA), umgeschrieben und in das Zellplasma gebracht. Hier lagern sich kleine Proteinfabriken, die Ribosomen, an die mRNA an und beginnen mit ihrer Arbeit. Sie „lesen“ die Basenreihenfolge ab und übersetzen sie in Aminosäuren. Dabei starten sie weder direkt am Anfang der mRNA noch an einer beliebigen Stelle, sondern immer genau beim Basentriplett AUG, dem Start-Codon. Dieses Triplett kodiert die Aminosäure Methionin, die somit in jedem Protein die erste Aminosäure darstellt. Methionin kann jedoch auch noch an anderen Stellen mitten im Protein vorkommen. Die Frage lautet also: Woher wissen die Ribosomen, ob ein AUG-Codon ein Startsignal darstellt oder nicht?

Dabei kommt den einzelligen Lebewesen ohne echten Zellkern, den Prokaryoten, für gewöhnlich die Shine-Dalgarno-Sequenz (SD-Sequenz) zu Hilfe. Es handelt sich dabei um eine im Laufe der Evolution nahezu unveränderte Basenreihenfolge der mRNA, die sich in der Nähe des Start-Codons befindet. Die Ribosomen besitzen eine Anti-Shine-Dalgarno-Sequenz, die mit der SD-Sequenz eine starke Bindung eingehen kann. Wandert ein Ribosom die mRNA auf der Suche nach dem Start-Codon entlang, so wird es von der SD-Sequenz festgehalten und erkennt folglich auch den richtigen Startpunkt. Es gibt jedoch auch mRNAs ohne Shine-Dalgarno-Sequenz, bei denen die Ribosomen trotzdem das richtige AUG-Triplett aufspüren. Der Mechanismus, der die korrekte Identifikation des Startsignals ermöglicht, war bisher vollkommen unklar.

Neuesten Erkenntnissen nach scheint die Struktur - oder besser gesagt die Strukturlosigkeit - der mRNA dafür verantwortlich zu sein. Lars Scharff und Liam Childs vom Potsdamer Max-Planck-Institut für molekulare Pflanzenphysiologie haben mehrere zehntausend Gene von unterschiedlichen Prokaryoten und Zellorganellen auf das Vorhandensein einer Shine-Dalgarno-Sequenz hin untersucht. Sie fanden heraus, dass je nach Organismus zwischen 15 und 50 Prozent aller Gene keine SD-Sequenz besitzen. Dass die Ribosomen auch auf diesen Genen das Start-Codon erkennen, hängt vermutlich damit zusammen, dass es besonders gut zugänglich ist. Normalerweise liegt die mRNA nicht als langer Faden vor, sondern bildet Schlaufen und Haarnadelstrukturen aus. Ein Ribosom kann sich aber nur an unstrukturierte Bereiche der mRNA anlagern und genau hierin scheint das Geheimnis zu liegen. „Bei Genen ohne Shine-Dalgarno-Sequenz zeigt die mRNA um das Start-Codon herum kaum gefaltete Strukturen, anders als bei Genen mit einer Shine-Dalgarno-Sequenz“, erklärt Scharff die Erkenntnisse.

In einem Experiment zerstörten die Forscher die SD-Sequenz durch eine Mutation, wodurch sich die Rate, mit der die mRNA in Proteine übersetzt wurde, drastisch senkte. „Sobald wir eine zweite Mutation einfügten, die gleichzeitig die Struktur der mRNA am Start-Codon auflöste, verringerte sich dieser Effekt und es wurde wieder mehr Protein gebildet“, fasst Childs die Ergebnisse zusammen. Trotz fehlender SD-Sequenz wird das AUG-Codon vom Ribosom erkannt, weil es leichter zugänglich und nicht in Schlaufen und Windungen versteckt ist.

Aufbauend auf diesen Resultaten werden sich in Zukunft anhand von Strukturanalysen der mRNA bessere Vorhersagen über die Proteinsyntheserate machen lassen. Darüber hinaus könnte durch eine Änderung der mRNA-Struktur in die eine oder andere Richtung beeinflusst werden, welche Proteine gebildet werden.

Originalveröffentlichung
Lars B. Scharff, Liam Childs, Dirk Walther, Ralph Bock
Local Absence of Secondary Structure Permits Translation of mRNAs that Lack Ribosome-binding Sites

PLoS, 23. Juni 2011, DOI: DOI: 10.1371/journal.pgen.1002155

Ansprechpartner
Professor Dr. Ralph Bock
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Telefon: +49 (0)331 567-8700
Fax: +49 (0)331 567-8701
E-Mail: rbock@mpimp-golm.mpg.de
Ursula Ross-Stitt
Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam
Telefon: +49 331 567-8310
Fax: +49 331 567-8983
E-Mail: ross-stitt@mpimp-gom.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpimp-gom.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics