Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Strukturbiologie: Konformationswechsel bewirkt Multifunktionalität bei der Genexpression

20.07.2012
Eine internationale Forschungsgruppe um Prof. Paul Rösch am Forschungszentrum für Bio-Makromoleküle der Universität Bayreuth berichtet in der aktuellen Ausgabe der renommierten Zeitschrift "Cell" über eine überraschende Entdeckung im Grenzgebiet zwischen Bakteriengenetik und Strukturbiologie.
Das bakterielle Protein RfaH kann zwei völlig verschiedene räumliche Strukturen annehmen. Die carboxyterminale Domäne geht unter dem Einfluss externer Faktoren von einer komplett alpha-helikalen Struktur in eine beta-Faltblatt-Struktur über. Dieser drastische Konformationswechsel ermöglicht die Steuerung der Genexpression und der Proteintranslation durch RfaH.

Magnetische Kernresonanzspektroskopie
zeigt den außergewöhnlichen Strukturwechsel eines Proteins

Proteine, molekulare Bausteine des Lebens, bestehen aus einer Kette von Aminosäuren. Diese Kette bildet in der Regel eine einzige räumliche Struktur aus, die durch die Abfolge der Aminosäuren vorgegeben ist. Nur in dieser gefalteten Form können die meisten Proteine spezifische Funktionen in Organismen wahrnehmen. Die traditionelle wissenschaftliche Sichtweise ist hierbei, dass ein bestimmtes Protein in einer definierten Umgebung nur eine einzige räumliche Struktur annehmen und nur mit dieser seine Aufgaben erfüllen kann.

Neueste Ergebnisse aus dem Forschungszentrum Bio-Makromoleküle der Universität Bayreuth zeigen, dass diese lange Zeit vorherrschende Meinung modifiziert werden muss. In einer internationalen Kooperation unter der Leitung von Prof. Paul Rösch wurde das Protein RfaH aus E.coli-Bakterien untersucht. Wie unter Anwendung der magnetischen Kernresonanzspektroskopie (NMR) gezeigt werden konnte, kann das bakterielle Protein RfaH zwei völlig unterschiedliche räumliche Strukturen annehmen. Diese erfüllen, wie bakteriengenetische Untersuchungen ergeben haben, völlig unterschiedliche Funktionen.

In der geschlossenen Form des Proteins RfAH (rechts) liegen die C-terminale Domäne (CTD, blau) und die N-terminale Domäne (NTD, grün) eng beeinander. Die alpha-helikale CTD verdeckt den Teil der NTD, der an die RNA-Polymerase bindet. Die Bindung an ein spezifisches DNA-Stück führt dazu, dass die Domänen räumlich getrennt werden (links) und die CTD ihre Struktur komplett ändert. Jetzt kann die NTD an die RNA-Polymerase und die CTD an das ribosomale Protein S10 binden. RfaH wird somit zu einem regulierenden Faktor bei der Umschreibung von DNA in RNA.

Abbildung: Dr. Stefan Knauer, Universität Bayreuth; nur mit Autorangabe zur Veröffentlichung frei.

RfaH besteht aus zwei charakteristischen molekularen Einheiten, einer aminoterminalen Domäne (N-terminal domain; NTD) und einer carboxyterminalen Domäne (C-terminal domain; CTD), die flexibel verbunden sind. Die beiden Domänen liegen dabei räumlich aneinander. Die CTD besteht ausschließlich aus zwei alpha-Helices (schraubenartigen Strukturen), die ähnlich einer Haarnadel angeordnet sind und die Bindung der NTD an die RNA-Polymerase blockieren. Die Bindung der NTD an ein bestimmtes Stück DNA führt zu einer räumlichen Trennung der Domänen. Dies hat wiederum zur Folge, dass die Faltung der CTD sich komplett ändert: von der alpha-helikalen Haarnadelstruktur in eine Struktur, die nicht die geringste Ähnlichkeit mit der Ausgangsstruktur besitzt (beta-Faltblatt-Struktur). Die neue Struktur ermöglicht die Bindung der CTD an das Protein S10.

"Nie zuvor ist an Proteinen ein solcher kompletter Strukturwechsel beobachtet worden", berichtet Prof. Paul Rösch. "Dieser Befund ist vor allem deshalb so spektakulär, weil es parallel dazu gelungen ist, die Folgen dieses Strukturwechsels für zentrale zelluläre Prozesse in Bakterien aufzudecken." Infolge seiner Wandlungsfähigkeit ist das bakterielle RfaH nämlich in der Lage, die Übersetzung des bakteriellen Erbgutes in Proteine, also die Genexpression, zu steuern.

Steuerungsfunktionen der Domänen bei der Genexpression

Die Genexpression beginnt mit der Umschreibung der in der DNA enthaltenen Erbinformation in RNA (Transkription). Die molekulare Maschine, die diese Funktion übernimmt, ist die RNA-Polymerase. Auf die Transkription folgt die Herstellung neuer Proteine auf der Grundlage der RNA (Translation) an einem weiteren Zellbestandteil, dem Ribosom.

Aufgrund seiner Fähigkeit zum Strukturwechsel ist das Protein RfaH an beiden Prozessen beteiligt. Nach der Domänentrennung bindet die NTD des Proteins an die RNA-Polymerase, während die nunmehr umgefaltete CTD an das Ribosom bindet. Diese Bindung wird durch einen Bestandteil des Ribosoms, das Protein S10, vermittelt. Sobald die spektakuläre Strukturänderung des RfaH-Moleküls vollzogen ist, koppelt RfaH Transkription und Translation, indem es die beiden Hauptakteure – die RNA-Polymerase und das Ribosom – physisch verbindet. Die Möglichkeit der regulierten Domänentrennung und der damit verbundenen kompletten Umfaltung der CTD erklärt die zentrale Rolle des Proteins RfaH in der Steuerung der bakteriellen Genexpression auf strukturbiologisch-molekularer Ebene.

Die Partner-Proteine RfaH und NusG

Weshalb aber nimmt RfaH zunächst überhaupt eine nicht funktionale Struktur an? Hinweise hierfür lieferten Untersuchungen am Protein NusG, das ebenfalls aus einer NTD und einer CTD besteht. Bei NusG sind diese beiden Domänen aber immer räumlich getrennt; die CTD liegt immer in der beta-Faltblatt-Struktur vor. Auch bei NusG bindet die NTD an die RNA-Polymerase und die CTD via Protein S10 an das Ribosom. NusG ist allerdings ein Protein, das generell an der bakteriellen Genexpression beteiligt ist – im Gegensatz zu RfaH, das diese Rolle nur in sehr speziellen Fällen spielt. Damit sich NusG und RfaH bei dieser Aufgabe nicht behindern, verdeckt die CTD von RfaH mit ihrer länglichen alpha-Helix-Struktur exakt denjenigen Abschnitt der NTD, der das Anheften an die RNA-Polymerase ermöglicht. Die CTD selbst kann in ihrer alpha-helikalen Struktur nicht an das Ribosom binden, und somit ist RfaH in beiden Funktionen blockiert. Die Aktivierung von RfaH erfolgt dann über Domänentrennung und Umfaltung der CTD in die beta-Faltblatt-Struktur – erst dann können beide Domänen den Kontakt mit ihren Partnern herstellen.

Internationale Kooperation

Die in "Cell" veröffentlichten Forschungsergebnisse sind aus einer mehrjährigen transatlantischen Kooperation hervorgegangen. Das von Professor Paul Rösch geleitete Forschungszentrum für Bio-Makromoleküle an der Universität Bayreuth hat dabei eng zusammengearbeitet mit Biochemikern, Bakteriologen und Mikrobiologen an der Ohio State University und an der University of Wisconsin. Die Deutsche Forschungsgemeinschaft (DFG) in Deutschland und die National Institutes of Health (NIH) in den USA haben die Forschungsarbeiten gefördert.

Ausblick

"Gemeinsam haben wir ein Beispiel dafür entdeckt, wie ein Protein seine Faltung grundlegend ändern und dadurch unterschiedliche Funktionen übernehmen kann", meint Professor Paul Rösch. "Dieses Prinzip, Proteine durch Strukturänderung multifunktional zu machen, ist so frappierend einfach, dass die Vermutung nahe liegt, dass wir bei anderen molekularen Prozessen auf ähnliche Zusammenhänge stoßen werden."

Veröffentlichung:

Burmann et al., An α Helix to β Barrel Domain Switch Transforms the Transcription Factor RfaH into a Translation Factor,
Cell (2012), http://dx.doi.org/10.1016/j.cell.2012.05.042

Svetlov and Nudler, Unfolding the Bridge between Transcription and Translation,
Cell (2012), http://dx.doi.org/10.1016/j.cell.2012.06.025

Burmann et al., A NusE:NusG Complex Links Transcription and Translation
Science. 2010 328:501-4.

Video:

Ein erläuterndes Video ist unter http://www.cell.com zu finden.

Ansprechpartner:

Prof. Dr. Paul Rösch
Forschungszentrum für Bio-Makromoleküle
Universität Bayreuth
95440 Bayreuth
Tel. +49 (0)921 55-3540
E-Mail: roesch@unibt.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker lassen Bor-Atome wandern
17.01.2020 | Westfälische Wilhelms-Universität Münster

nachricht Infektiöse Proteine bei Alzheimer
17.01.2020 | Klinikum der Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF errichtet ein Applikationslabor für Quantensensorik

Um den Transfer von Forschungsentwicklungen aus dem Bereich der Quantensensorik in industrielle Anwendungen voranzubringen, entsteht am Fraunhofer IAF ein Applikationslabor. Damit sollen interessierte Unternehmen und insbesondere regionale KMU sowie Start-ups die Möglichkeit erhalten, das Innovationspotenzial von Quantensensoren für ihre spezifischen Anforderungen zu evaluieren. Sowohl das Land Baden-Württemberg als auch die Fraunhofer-Gesellschaft fördern das auf vier Jahre angelegte Vorhaben mit jeweils einer Million Euro.

Das Applikationslabor wird im Rahmen des Fraunhofer-Leitprojekts »QMag«, kurz für Quantenmagnetometrie, errichtet. In dem Projekt entwickeln Forschende von...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: Wie Zellen ihr Skelett bilden

Wissenschaftler erforschen die Entstehung sogenannter Mikrotubuli

Zellen benötigen für viele wichtige Prozesse wie Zellteilung und zelluläre Transportvorgänge strukturgebende Filamente, sogenannte Mikrotubuli.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2020

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemiker lassen Bor-Atome wandern

17.01.2020 | Biowissenschaften Chemie

Infektiöse Proteine bei Alzheimer

17.01.2020 | Biowissenschaften Chemie

Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

17.01.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics