Strahlenschäden in der DNA des Menschen

Wissenschaftler am GSI Helmholtzzentrum für Schwerionenforschung haben erstmals direkt die Reparaturvorgänge bei DNA-Schäden beobachtet, nachdem menschliche Zellen mit Ionen bestrahlt wurden.

DNA-Schäden speziell durch Ionenstrahlen ermöglichen neue grundlegende Erkenntnisse darüber, wie die Reparatur in menschlichen Zellen generell abläuft. Das genaue Verständnis der Reparaturabläufe hilft Wissenschaftlern, die Entstehung von Krebs besser nachzuvollziehen und künftige Behandlungsmöglichkeiten zu entwickeln. Krebs kann entstehen, wenn DNA-Schäden fehlerhaft repariert werden.

Die DNA, die das gesamte menschliche Erbgut enthält, ist in mehreren so genannten Chromosomen zusammengefasst. Die GSI-Wissenschaftler haben nun beobachtet, dass Proteine, die für die Reparatur verantwortlich sind, zur Schadensstelle hinwandern. Größere Bewegungen der Chromosomen sind für die Reparatur daher nicht nötig.

Deshalb ist die Wahrscheinlichkeit am größten, dass es bei Reparaturfehlern zu einem Austausch von DNA-Bruchstücken zwischen benachbarten Chromosomen kommt. Dies führt zu einer Veränderung der Chromosomen – eine häufige Ursache für die Entstehung von Krebs.

Ionenstrahlen, die DNA-Schäden verursachen, schädigen diese in einem räumlich begrenzten Bereich. Daher können die Wissenschaftler anschließend die Reparaturvorgänge in der Zelle an dieser Stelle genau beobachten. Andere Strahlungsarten, wie zum Beispiel Röntgenstrahlung, erzeugen Schäden, die über die gesamte Zelle verteilt sind. Dadurch wird es für die Wissenschaftler im Einzelnen schwieriger nachzuvollziehen, wie der Reparaturvorgang an einem Schadenspunkt vor sich geht.

Die GSI-Wissenschaftler benutzen für ihre Beobachtungen einen neu entwickelten Messplatz am Beschleuniger des GSI. Dort können sie kultivierte lebende menschliche Zellen mit Ionen bestrahlen. Mit speziellen Mikroskopen beobachten sie die Reparaturvorgänge in den geschädigten Zellen unmittelbar nach der Bestrahlung mehrere Stunden lang. Dazu werden die Proteine, die für die Reparatur verantwortlich sind, so mit speziellen fluoreszierenden Farbstoffen versehen, dass sie im Mikroskop sichtbar sind.

Die Ergebnisse sind im Fachjournal „Proceedings of the National Academy of Sciences USA“ publiziert. B. Jakob, J. Splinter, M. Durante and G. Taucher-Scholz, Live cell microscopy analysis of radiation-induced DNA double-strand break motion. Proc. Natl. Acad. Sci. USA, in press (2009)

Media Contact

Dr. Ingo Peter idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer