Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen unter Zugzwang

12.07.2016

Ein Team von Wissenschaftler/innen um Sara Wickström, Arbeitsgruppenleiterin am CECAD, dem Exzellenzcluster für die Erforschung altersassoziierter Erkrankungen an der Universität zu Köln, hat neue Einblicke gewonnen, wie Stammzellen fühlen und auf externe mechanische Reize reagieren. Dies geschieht durch eine Veränderung der DNA im Zellkern und einer daraus folgenden veränderten Expression von Genen, die für die Differenzierung der Stammzellen benötigt werden.

Alle Zellen haben den identischen genetischen Code, egal ob es sich um Haut- oder Gehirnzellen handelt. Diese Zellen sind aber völlig verschiedenen Umgebungen und mechanischen Belastungen ausgesetzt. Gehirnzellen sind zum Beispiel sehr weich, Knochen hingegen extrem hart.


Stammzellen reagieren auf mechanische Belastung mit einer Änderung ihrer Struktur Das Aktin-Cytoskelett (in Grün) ist in der Lage auf mechanische Belastung mit einer Umstrukturierung zu reagieren. Weil das Cytoskelett direkt mit dem Zellkern und damit mit der DNA (in Blau) vernetzt ist, warden mechanische Belastungen an die DNA weitergegeben. Diese ändert ihre strukturelle Organisation und die Genexpression.

Bild: Huy Quang Le

Quelle: Universität zu Köln

Frühere Forschungen haben gezeigt, dass Zellen auf externe Kräfte mit Änderungen in ihrer Struktur und Genexpression reagieren können, um sich ihrer Umgebung besser anzupassen und weiterhin ihre Funktion aufrecht erhalten zu können. Die molekularen Mechanismen dieser Regulierung sind aber bisher unklar.

“Unsere Haut beschützt uns gegen unsere Umgebung und ist dabei dauerhaft toxischen Substanzen, UV-Strahlung und mechanischer Belastung ausgesetzt. Daher ist es besonders für Hautzellen sehr wichtig, auf äußere Kräfte reagieren zu können”, so Huy Quang Le, der leitende Wissenschaftler der Studie, die am Max-Planck-Institut für die Biologie des Alterns, einem CECAD-Kooperationspartner, durchgeführt wurde. Die Ergebnisse sind in Nature Cell Biology erschienen.

Um zu untersuchen, wie Hautzellen auf Belastung reagieren, nutzten Le und seine Kollegen eine spezielle mechanische Vorrichtung, die Stammzellkulturen von Hautzellen einer Dehnung aussetzte, wie sie auch im Gewebe vorkommt. Die Genexpression der gedehnten Zellen wurden mithilfe von Hochdurchsatzsequenzierung (next-generation-sequencing) analysiert.

Hier konnte gezeigt werden, dass tausende Gene herunter reguliert waren, aber nur sehr wenige Gene eine gesteigerte Expression hatten. Weitere Forschung zeigte, dass die Dehnung weitreichend veränderte, wie die DNA im Zellkern vorliegt. Daraus resultiert eine weitreichende Unterdrückung der transkriptionalen Aktivität der Zelle, was bedeutet, dass weniger DNA in messengerRNA zur Herstellung von Proteinen kopiert wird.

Damit sich eine Stammzelle differenzieren kann, müssen viele Gene transkribiert werden, damit die Zelle ihre spezielle Architektur und Funktion erhält. Als Resultat der mechanischen Dehnung konnten sich die Zellen nicht differenzieren. “Es war aufregend festzustellen, dass wir die strukturelle Organisation der DNA einfach durch eine mechanischen Reizung der Stammzellen verändern konnten”, so Sara Wickström.

Bei weiterer Untersuchung der zellulären Mechanismen der neu geordneten DNA fanden Le und seine Kollegen heraus, dass die mechanischen Kräfte an der Kernhülle registriert werden, einer Struktur, die die DNA umgibt und vom Rest der Zelle trennt. Eines der Schlüsselproteine in diesem Prozess ist Emerin, welches den Kern und die DNA mit dem Cytoskelett verbindet.

Dieses Skelett ist die Struktur, die der Zelle Stabilität gibt. Das ist daher interessant, weil Emerin in mutierter Form bei der Krankheit Emery-Dreifuss-Muskeldystrophie vorliegen kann. Patienten, die an dieser Erkrankung leiden, weisen eine Degeneration mechanisch belasteter Gewebe auf, zum Beispiel in Skelettmuskeln, dem Herz oder der Haut.

“Der genaue Mechanismus dieser Krankheit ist noch unbekannt und uns fehlen effektive Behandlungsmöglichkeiten. Ein großes Zukunftsziel unseres Labors ist es zu verstehen, ob der in unserer Studie entdeckte Mechanismus eine Rolle in der Pathogenese der Krankheit spielt”, sagt Sara Wickström. Weil sich die mechanischen Eigenschaften von Geweben auch mit dem Alter ändern, besteht ein weiteres Ziel darin zu verstehen, wie gealterte Stammzellen das Einwirken externer Kräfte wahrnehmen und inwieweit Veränderungen in den mechanischen Eigenschaften des umgebenden Gewebes sich auf diese Wahrnehmung auswirken.

Originalpublikation: “Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment” in Nature Cell Biology
Digital object identifier (DOI): 10.1038/ncb3387

Kontakt: Dr. Sara Wickström
Max Planck Research Group Leader, Max Planck Institute für die Biologie des Alterns
+49 221 70 770
wickstroem@age.mpg.de
Max-Planck-Institut für die Biologie des Alterns
Joseph-Stelzmann Str. 9b
50931 Köln

Gabriele Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics