Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stammzellen unter Zugzwang

12.07.2016

Ein Team von Wissenschaftler/innen um Sara Wickström, Arbeitsgruppenleiterin am CECAD, dem Exzellenzcluster für die Erforschung altersassoziierter Erkrankungen an der Universität zu Köln, hat neue Einblicke gewonnen, wie Stammzellen fühlen und auf externe mechanische Reize reagieren. Dies geschieht durch eine Veränderung der DNA im Zellkern und einer daraus folgenden veränderten Expression von Genen, die für die Differenzierung der Stammzellen benötigt werden.

Alle Zellen haben den identischen genetischen Code, egal ob es sich um Haut- oder Gehirnzellen handelt. Diese Zellen sind aber völlig verschiedenen Umgebungen und mechanischen Belastungen ausgesetzt. Gehirnzellen sind zum Beispiel sehr weich, Knochen hingegen extrem hart.


Stammzellen reagieren auf mechanische Belastung mit einer Änderung ihrer Struktur Das Aktin-Cytoskelett (in Grün) ist in der Lage auf mechanische Belastung mit einer Umstrukturierung zu reagieren. Weil das Cytoskelett direkt mit dem Zellkern und damit mit der DNA (in Blau) vernetzt ist, warden mechanische Belastungen an die DNA weitergegeben. Diese ändert ihre strukturelle Organisation und die Genexpression.

Bild: Huy Quang Le

Quelle: Universität zu Köln

Frühere Forschungen haben gezeigt, dass Zellen auf externe Kräfte mit Änderungen in ihrer Struktur und Genexpression reagieren können, um sich ihrer Umgebung besser anzupassen und weiterhin ihre Funktion aufrecht erhalten zu können. Die molekularen Mechanismen dieser Regulierung sind aber bisher unklar.

“Unsere Haut beschützt uns gegen unsere Umgebung und ist dabei dauerhaft toxischen Substanzen, UV-Strahlung und mechanischer Belastung ausgesetzt. Daher ist es besonders für Hautzellen sehr wichtig, auf äußere Kräfte reagieren zu können”, so Huy Quang Le, der leitende Wissenschaftler der Studie, die am Max-Planck-Institut für die Biologie des Alterns, einem CECAD-Kooperationspartner, durchgeführt wurde. Die Ergebnisse sind in Nature Cell Biology erschienen.

Um zu untersuchen, wie Hautzellen auf Belastung reagieren, nutzten Le und seine Kollegen eine spezielle mechanische Vorrichtung, die Stammzellkulturen von Hautzellen einer Dehnung aussetzte, wie sie auch im Gewebe vorkommt. Die Genexpression der gedehnten Zellen wurden mithilfe von Hochdurchsatzsequenzierung (next-generation-sequencing) analysiert.

Hier konnte gezeigt werden, dass tausende Gene herunter reguliert waren, aber nur sehr wenige Gene eine gesteigerte Expression hatten. Weitere Forschung zeigte, dass die Dehnung weitreichend veränderte, wie die DNA im Zellkern vorliegt. Daraus resultiert eine weitreichende Unterdrückung der transkriptionalen Aktivität der Zelle, was bedeutet, dass weniger DNA in messengerRNA zur Herstellung von Proteinen kopiert wird.

Damit sich eine Stammzelle differenzieren kann, müssen viele Gene transkribiert werden, damit die Zelle ihre spezielle Architektur und Funktion erhält. Als Resultat der mechanischen Dehnung konnten sich die Zellen nicht differenzieren. “Es war aufregend festzustellen, dass wir die strukturelle Organisation der DNA einfach durch eine mechanischen Reizung der Stammzellen verändern konnten”, so Sara Wickström.

Bei weiterer Untersuchung der zellulären Mechanismen der neu geordneten DNA fanden Le und seine Kollegen heraus, dass die mechanischen Kräfte an der Kernhülle registriert werden, einer Struktur, die die DNA umgibt und vom Rest der Zelle trennt. Eines der Schlüsselproteine in diesem Prozess ist Emerin, welches den Kern und die DNA mit dem Cytoskelett verbindet.

Dieses Skelett ist die Struktur, die der Zelle Stabilität gibt. Das ist daher interessant, weil Emerin in mutierter Form bei der Krankheit Emery-Dreifuss-Muskeldystrophie vorliegen kann. Patienten, die an dieser Erkrankung leiden, weisen eine Degeneration mechanisch belasteter Gewebe auf, zum Beispiel in Skelettmuskeln, dem Herz oder der Haut.

“Der genaue Mechanismus dieser Krankheit ist noch unbekannt und uns fehlen effektive Behandlungsmöglichkeiten. Ein großes Zukunftsziel unseres Labors ist es zu verstehen, ob der in unserer Studie entdeckte Mechanismus eine Rolle in der Pathogenese der Krankheit spielt”, sagt Sara Wickström. Weil sich die mechanischen Eigenschaften von Geweben auch mit dem Alter ändern, besteht ein weiteres Ziel darin zu verstehen, wie gealterte Stammzellen das Einwirken externer Kräfte wahrnehmen und inwieweit Veränderungen in den mechanischen Eigenschaften des umgebenden Gewebes sich auf diese Wahrnehmung auswirken.

Originalpublikation: “Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment” in Nature Cell Biology
Digital object identifier (DOI): 10.1038/ncb3387

Kontakt: Dr. Sara Wickström
Max Planck Research Group Leader, Max Planck Institute für die Biologie des Alterns
+49 221 70 770
wickstroem@age.mpg.de
Max-Planck-Institut für die Biologie des Alterns
Joseph-Stelzmann Str. 9b
50931 Köln

Gabriele Rutzen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-koeln.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tief in die Zelle geblickt
05.08.2020 | Technische Universität Berlin

nachricht Tellur macht den Unterschied
05.08.2020 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Im Focus: Lastenfahrräder: Leichtbaupotenziale erkennen und nutzen

Lastenräder sind »hipp« und ein Symbol für klimafreundliche Mobilität, tagtäglich begegnen wir ihnen. Straßen und Radwege müssen an diese neue Fahrzeugkategorie angepasst werden. Aber nicht nur die Infrastruktur kann optimiert werden, Lastenräder selbst bieten noch reichlich Potenzial. Im neu gestarteten Projekt »LastenLeichtBauFahrrad« (L-LBF) suchen Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF zusätzliche Leichtbaupotenziale dieser urbanen Vehikel. Über die Fortschritte des Projekts informiert eine eigene Webseite unter www.lbf.fraunhofer.de/L-LBF 

Form und Design von Lastenfahrrädern variieren von schnittig schick bis kastig oder tonnig. Sie stellen das neue Statussymbol der »mittleren Generation« dar....

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

Städte als zukünftige Orte der Nahrungsmittelproduktion?

29.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tief in die Zelle geblickt

05.08.2020 | Biowissenschaften Chemie

Tellur macht den Unterschied

05.08.2020 | Biowissenschaften Chemie

Humane zellbasierte Testsysteme für Toxizitätsstudien: Ready-to-use Tox-Assay (hiPS)

05.08.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics