Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabilität im Neuronenfeuer

16.11.2015

Kortikale Interneurone verringern das Rauschen in neuronalen Antworten

Wissenschaftler des Bonner Forschungszentrums caesar haben in Zusammenarbeit mit dem Bernstein Center for Computational Neuroscience, dem Max-Planck-Institut für biologische Kybernetik und dem Max Planck Florida Institute for Neuroscience einen möglichen Mechanismus entdeckt, wie Nervenzellen im Kortex bei der Umwandlung von sensorischen Signalen in neuronale Aktivität starke Schwankungen vermeiden.


Rekonstruktion einzelner Neuronen aus dem Kortex einer Ratte

Um Vorhersagen machen zu können, verwendeten die Forscher Computermodelle und überprüften diese anschließend in vivo an elektrophysiologischen Messungen.

Selbst einfachste sensorische Signale aktivieren im Kortex Millionen von Synapsen. Bislang war unklar, wie die wichtigsten Nervenzellen im Kortex, die Pyramidenzellen, diese mitunter stark verrauschten Ausgangssignale in eine stabile elektrophysiologische Antwort umwandeln.

Um sich der Antwort auf diese Frage zu nähern, untersuchten Wissenschaftler der Abteilung Behavior and Brain Organisation vom Bonner Forschungszentrum caesar, einem Institut der Max-Planck-Gesellschaft, wie Neurone aus der obersten Kortexschicht (L1) mit Neuronen aus tieferliegenden Schichten interagieren.

Warum ist diese oberste Kortexschicht so besonders? Sie enthält nur hemmende Neurone und Dendriten von erregenden Neuronen aus tieferen Schichten. In dieser obersten Schicht befinden sich nur wenige hemmende Neuronen. Diese sind aber perfekt angeordnet, um ihre Funktion auszuüben. Der genaue Mechanismus war bislang unklar, insbesondere bei Antworten auf sensorische Signale.

Mit Patch-Clamp-Methoden gelang es den Wissenschaftlern zunächst, die 3D-Morphologie der L1-Interneuronen zu rekonstruieren und die daraus gewonnenen anatomischen und elektrophysiologischen Informationen in ein bestehendes biophysikalisches Modell des somatosensorischen Kortex zu integrieren.

Computersimulationen anhand dieses Modells legten die Hypothese nahe, dass die hemmenden Interneurone die Variabilität der neuronalen Antworten auf die sensorischen Eingangssignale herabsetzen und so die Robustheit der neuronalen Muster kontrollieren, zumindest in den Dendriten.

Diese aus dem theoretischen Modell abgeleiteten Hypothesen konnten in vivo an Ratten durch eine Kombination von elektrophysiologischen und bildgebenden Verfahren mit Hilfe der 2-Photonen-Mikroskopie bestätigt werden:

Unterdrückten die Wissenschaftler die Aktivität der L1-Interneuronen, so konnten sie beobachten, dass die neuronalen Antworten über mehrere Messungen hinweg deutlich stärkeren Schwankungen unterworfen waren als bei aktiven Interneuronen. Hingegen blieb die Struktur der Signale unverändert.

Durch welchen Mechanismus wird dies bewerkstelligt? Durch weitere Simulationen wurde deutlich, dass distale dendritische Hemmung der Mechanismus ist, der am besten zu den Daten passt. Auf diese Weise können Interneurone kontrollieren, wie die Dendriten der Pyramidenzellen die sensorischen Eingangssignale verarbeiten.

„Eine distale dendritische Hemmung stellt möglicherweise ein – quer durch alle Sinnesmodalitäten – universelles Organisationsprinzip im Kortex dar, um gezielt die Robustheit der neuronalen Antwortmuster auf sensorische Ausgangssignale zu kontrollieren“, so Jason Kerr, einer der wissenschaftlichen Direktoren bei caesar.


Originalpublikation
Egger, R., Schmitt, A.C., Wallace, D.J., Sakmann, B., Oberlaender, M. & Kerr, J.N. (2015) “Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites“, Proc. Natl. Acad. Sci. USA [Epub ahead of print]

DOI: 10.1073/pnas.1518773112


Kontakt
Dr. Jason Kerr
Abteilung Behavior and Brain Organisation
Forschungszentrum caesar – ein Institut der Max-Planck-Gesellschaft
Ludwig-Erhard-Allee 2
53175 Bonn, Deutschland
+49 (0)228 9656-103
jason.kerr(at)caesar.de

Weitere Informationen:

http://www.caesar.de/1387.html?&L=2

Dr. Jürgen Reifarth | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente
17.12.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kommunikation zwischen neuronalen Netzwerken
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics