Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stabile Wahrnehmung im erwachsenen Gehirn

10.06.2016

Das erwachsene Gehirn hat gelernt, ein Bild der Umwelt aus Informationen der Sinnesorgane zu berechnen. Verändern sich die Eingangssignale, kann sich auch das erwachsene Gehirn anpassen. Ist die Störung behoben, kehrt es, im Idealfall, zu seinem ursprünglichen Zustand zurück. Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried konnten in Mäusen zeigen, dass diese Eigenschaft auf der Fähigkeit einzelner Nervenzellen beruht: Einzelne Zellen sind in der Lage sich stark auf Veränderungen einzustellen und auch wieder ihren Ausgangszustand einzunehmen. Dies könnte erklären, warum das erwachsene Gehirn trotz ständiger Veränderungen nicht kontinuierlich alles neu erlernen muss

Alles, was wir über unsere Umwelt wissen, basiert auf Berechnungen unseres Gehirns. Während das kindliche Gehirn die Regeln der Umwelt erst noch lernen muss, weiß das erwachsene Gehirn, was es erwarten kann, und verarbeitet Umweltreize weitgehend stabil.


Aktive Nervenzellen der visuellen Großhirnrinde der Maus bei veränderten Sinneseindrücken. Weitere Informationen siehe www.neuro.mpg.de

(c) MPI für Neurobiologie / Rose

Doch auch das erwachsene Gehirn ist zeit seines Lebens in der Lage, auf Veränderungen zu reagieren, neue Erinnerungen zu bilden und zu lernen – es ist "plastisch". Forschungsergebnisse der letzten Jahre haben gezeigt, dass Veränderungen in den Nervenzellverbindungen die Grundlage dieser Plastizität sind.

Wie kann das Gehirn seine Verbindungen jedoch kontinuierlich verändern und Neues lernen, ohne zum Beispiel die bestehende, stabile Berechnung der Umwelt zu gefährden? Dieser Frage nach dem Zusammenspiel von Plastizität und Stabilität sind nun die Martinsrieder Neurobiologen aus der Abteilung von Tobias Bonhoeffer auf den Grund gegangen.

Die Wissenschaftler haben untersucht, wie stabil die Verarbeitung von Sinneseindrücken im visuellen Cortex der Maus ist. Seit rund 50 Jahren ist bekannt, dass bei dem zeitweisen Verschluss eines Auges der für dieses Auge zuständige Gehirnbereich zunehmend Signale aus dem noch offenen Auge verarbeitet. Eine Erkenntnis, die im Verwenden von Augenpflastern bei schielenden Kindern eine Anwendung findet.

"Dank neuer genetischer Farbstoffe ist es seit kurzem möglich, die Aktivitätssignale einzelner Nervenzellen über lange Zeiträume hinweg zuverlässig zu beobachten", berichtet Tobias Rose, der Erstautor der Studie. "Mit ein paar weiteren Verbesserungen konnten wir nun erstmals zeigen, was im Gehirn bei diesen Veränderungen passiert."

Durch das Mikroskop konnten die Wissenschaftler beobachten, dass rund zwei Drittel der Nervenzellen Signale aus dem anderen, offenen Auge übernehmen. "Das wirklich Spannende war jedoch, dass diese Zellen wieder zu ihrer Ursprungsaktivität zurückkehrten, sobald sie wieder Informationen von "ihrem" Auge erhielten", berichtet Tobias Rose.

Auch bei Wiederholung des Experiments veränderten sich genau dieselben Zellen. Aufgrund der großflächigen Veränderungen in den für die beiden Augen zuständigen Hirnbereichen hatten die Wissenschaftler eher vermutet, dass der Zellverband die erneut eintreffenden Informationen durch neue Verbindungen und das Rekrutieren von neuen Zellen kompensiert. "Es ist fast so, als könnten sich die einzelnen Zellen daran erinnern, wo sie welche Verbindungen vor dem Augenverschluss hatten, um diese dann wieder zu rekonstruieren", so Rose.

Die Ergebnisse legen nahe, dass Nervenzellen, die auf Veränderungen reagieren, einzelne stabile Verbindungen haben, die ihnen eine Rückkehr in ihren ursprünglichen Zustand erlauben. Dies würde es dem erwachsenen Gehirn erlauben, sich an veränderte Umweltbedingungen anzupassen, ohne dass sich die Grundverdrahtung komplett verändert. "Solche "Rückgratsynapsen" wurden vor einiger Zeit in theoretischen Studien postuliert", sagt Tobias Bonhoeffer.

"Sie konkret nachzuweisen, wird nun die nächste Herausforderung sein." Doch dies ist nicht die einzige Aufgabe, die vor den Forschern liegt: Ein Drittel der Zellen veränderte sich entweder gar nicht, oder verhielt sich im Widerspruch zu klassischen Theorien. "Wir wissen noch nicht genau warum sich diese Zellen so verhalten, aber wir haben schon Ideen, die wir jetzt noch testen müssen", freut sich Tobias Bonhoeffer auf die weitere Forschung.

ORIGINALVERÖFFENTLICHUNG
Tobias Rose, Juliane Jaepel, Mark Hübener, Tobias Bonhoeffer
Cell-specific restoration of stimulus preference after monocular deprivation in visual cortex
Science, 10. Juni 2016

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Tobias Bonhoeffer
Abteilung "Synapsen – Schaltkreise – Plastizität"
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 - 8578 3751
Email: office.bonhoeffer@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/bonhoeffer/de - Webseite der Abteilung von Tobias Bonhoeffer

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Berichte zu: Gehirn Max-Planck-Institut Nervenzellen Neurobiologie Zellen visual cortex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics