Sprechverbot für Bakterien

Kristallstruktur des Proteins PqsA in Komplex mit dem Intermediat Anthraniloyl-AMP (gelb), das von PqsA verarbeitet wird. HZI/Florian Witzgall

Immer mehr krankheitserregende Bakterien entwickeln Resistenzen gegen die gängigen Antibiotika. Einer dieser Problemkeime ist Pseudomonas aeruginosa, der beim Menschen schwere Infektionen auslöst und gleich gegen eine ganze Reihe von Antibiotika resistent ist. Daher suchen Forscher nach Angriffspunkten für alternative Wirkstoffe, die die Bakterien schwächen.

Pseudomonaden können in sogenannten Biofilmen überdauern – das sind dichte Verbünde, in denen die einzelnen Bakterien vor dem Immunsystem und Medikamenten geschützt sind. Damit die Bakterien einen solchen Biofilm bilden können, müssen sie zunächst über Signalstoffe miteinander kommunizieren.

Wissenschaftler des Helmholtz-Zentrums für Infektionsforschung (HZI) in Braunschweig haben die dreidimensionale Struktur eines Proteins aufgelöst, das an der Bildung der Signalmoleküle beteiligt ist. Anhand dieser Struktur ist es nun möglich, passgenaue Hemmstoffe zu modellieren, die den Signalweg unterbrechen und so die Bakterien stumm schalten können. Ihre Ergebnisse veröffentlichten die Wissenschaftler im internationalen Fachjournal ChemBioChem.

Im übertragenen Sinn sprechen auch Bakterien miteinander. Sie kommunizieren dabei nicht über akustische, sondern über chemische Signale. So stimmen sie zum Beispiel das Eindringen in einen Wirt oder ihre Vermehrung ab. Diese spezielle Art der Kommunikation wird „Quorum sensing“ genannt. Der Begriff „Quorum“ stammt aus der Zeit des römischen Reiches und bezeichnet im Senat die für eine Abstimmung benötigte geringste Zahl an Mitgliedern.

Pseudomonaden veranlassen darüber auch die Bildung von Biofilmen, indem die einzelnen Bakterien Signalmoleküle freisetzen und messen, wie viele Artgenossen sich gerade in ihrer Umgebung aufhalten. Ist ein Schwellenwert überschritten, starten sie ihr Angriffsprogramm. Haben sich die Pseudomonaden erst zu einem Biofilm zusammengelagert, sind sie nur noch schwer zu bekämpfen – egal, ob durch das Immunsystem oder durch Medikamente, denn selbst Antibiotika sind gegen Erreger in Biofilmen oft wirkungslos.

Allerdings bietet das Kommunikationssystem der Bakterien, das an der Biofilmbildung beteiligt ist, einen geeigneten Angriffspunkt für alternative Wirkstoffe: Sie könnten die Kommunikation unterdrücken, sodass die Bakterien für das Immunsystem und Antibiotika zugänglich bleiben.

„Herkömmliche Antibiotika greifen lebenswichtige Prozesse der Bakterien an, töten sie dadurch ab und erzeugen so einen Selektionsdruck, der die Bakterien dazu zwingt, Resistenzen gegen die Antibiotika zu entwickeln“, sagt Florian Witzgall, Doktorand in der HZI-Abteilung „Struktur und Funktion der Proteine“, die von Prof. Wulf Blankenfeldt geleitet wird. „Greift ein Wirkstoff dagegen in die Kommunikation der Bakterien ein, bleiben sie am Leben und werden nur unschädlich gemacht. Es bestünde vermutlich ein geringerer Druck zur Resistenzbildung.“

Bakterien nutzen verschiedene Systeme, um miteinander zu kommunizieren. Pseudomonas aeruginosa besitzt drei verschiedene Kommunikationssysteme, von denen eines für diesen Erreger spezifisch ist und als pqs-System (kurz für Pseudomonas Quinolone Signal) bezeichnet wird. Rund zehn Prozent aller Gene von Pseudomonas aeruginosa werden über interzelluläre Kommunikation reguliert, darunter viele Gene, die die Bakterien für die Infektion eines Wirtes benötigen.

„Das pqs-System bietet sich als Angriffspunkt für Medikamente an, da es für Pseudomonas recht spezifisch ist, eine Vielzahl von Prozessen wie die Bildung von Virulenzfaktoren oder Biofilmen reguliert und der Mensch kein homologes System besitzt“, sagt Witzgall. Im pqs-System bilden verschiedene Proteine in mehreren Schritten ein Signalmolekül, über das die Bakterien miteinander kommunizieren und das durch die Aktivierung eines DNA-bindenden Rezeptors eine Vielzahl von Genen reguliert, die zum Beispiel das Infektionsprogramm von Pseudomonas steuern.

Die HZI-Forscher haben sich nun das erste Protein dieser Produktionskette vorgenommen und seine dreidimensionale Struktur entschlüsselt. Dazu haben sie das Protein – PqsA – im Labor von harmlosen Escherichia coli-Bakterien herstellen lassen, es isoliert, gereinigt und zum Kristallisieren gebracht. Besonders die Kristallbildung ist ein langwieriger Prozess, in dem die Wissenschaftler über 1000 verschiedene Bedingungen getestet haben, um zum gewünschten Ergebnis zu kommen. Anschließend haben sie die entstandenen Proteinkristalle mit Röntgenstrahlen beschossen und Streuungsmuster aufgenommen. Aus tausenden Streubildern ließ sich dann die dreidimensionale Molekülstruktur des Proteins berechnen. Insgesamt dauerte der Prozess rund acht Monate.

„Anhand der aufgeklärten Struktur wissen wir nun, wo und wie das Protein PqsA die Ausgangssubstanz für das spätere Signalmolekül bindet“, sagt Wulf Blankenfeldt. „Das macht es möglich, gezielt künstliche Moleküle am Computer zu entwerfen, die fest an PqsA binden und es nicht wieder verlassen können. So würde es in seiner Funktion blockiert und könnte keine Signalmoleküle mehr herstellen.“ Das Ergebnis: Die Bakterien wären ohne Signalmolekül nicht mehr in der Lage, sich gegenseitig wahrzunehmen – sie wären sozusagen taub-stumm. Die Entwicklung eines solchen Moleküls sei jetzt eine Aufgabe für die Wirkstoffforschung, die genau an den Ergebnissen der Strukturbiologen des HZI ansetzen könne.

Die Pressemitteilung und Bildmaterial finden Sie auch auf unserer Webseite unter dem Link https://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/sprechve…

Originalpublikation:
Florian Witzgall, Wiebke Ewert, Wulf Blankenfeldt: Structures of the N-terminal domain of PqsA in complex with anthraniloyl- and 6-fluoroanthraniloyl-AMP: substrate activation in Pseudomonas Quinolone Signal (PQS) biosynthesis. ChemBioChem, 2017, DOI: 10.1002/cbic.201700374

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern. http://www.helmholtz-hzi.de

Ihre Ansprechpartner:
Susanne Thiele, Pressesprecherin
susanne.thiele@helmholtz-hzi.de
Dr. Andreas Fischer, Wissenschaftsredakteur
andreas.fischer@helmholtz-hzi.de

Helmholtz-Zentrum für Infektionsforschung GmbH
Presse und Kommunikation
Inhoffenstraße 7
D-38124 Braunschweig

Tel.: 0531 6181-1400; -1405

Media Contact

Susanne Thiele Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer