Sprechende Gehirnhälften

Aufsicht auf den Kopf eines 1,5 Tage alten transgenen Fisch-Embryos während der Langzeit-Aufnahmen am konfokalen Mikroskop. Wachsende Nervenbahnen können über die verschiedenen Ebenen verfolgt werden. UMM

Die Arbeitsgruppe um PD Dr. Matthias Carl, die am Lehrstuhl für Zell- und Molekularbiologie der Medizinischen Fakultät Mannheim der Universität Heidelberg forscht, hat einen neuen Mechanismus der Entstehung von Nervennetzen entdeckt. Die Forschungsergebnisse sind aktuell im hochrangigen Forschungsjournal Current Biology veröffentlicht.

Das menschliche Gehirn enthält einige Millionen Nervenbahnen, die sich alle während der Entwicklung vom Embryo zum erwachsenen Menschen ausbilden, indem sie von Zelle A zu Zelle B wachsen und diese verbinden. Geschieht dies unpräzise oder gar nicht, hat dies zumeist verheerende neurologische Auswirkungen.

Die meisten Nervenbahnen finden sich zweimal im Gehirn, jeweils einmal auf der rechten und der linken Gehirnhälfte. Die Entwicklung der meist spiegelbildlichen Nervenbahnen scheint sehr ähnlich zu verlaufen. Dies ist nicht selbstverständlich, da sich die Gehirnhälften in ihrer Anatomie und Funktion in vielen Bereichen erheblich unterscheiden (siehe Hüsken et al., 2014, Current Biology). Es stellt sich daher die Frage, wie die Nervenbahnen ihren oftmals weiten Weg durch das Gehirn zu ihren Zielorten finden. Und: Wie kann dies in beiden Gehirnhälften in ähnlicher Weise geschehen, selbst wenn diese sich voneinander unterscheiden?

Die Arbeitsgruppe um PD Dr. Carl hat diese Fragen erforscht. Als Modellsystem verwenden die Wissenschaftler den Zebrafisch, da es die Transparenz der Fischembryonen erlaubt, Entwicklungsprozesse im lebenden Organismus zu verfolgen. Das von der Arbeitsgruppe studierte Nervennetz ist das sogenannte habenulare Nervennetz, dessen Funktion im Menschen mit pathophysiologischen Syndromen wie Depression und Schizophrenie in Verbindung gebracht wird.

Die Forscher in Mannheim arbeiteten mit dem Nikon-Imaging Zentrum in Heidelberg und der Core Facility Live Cell Imaging Mannheim (LIMA) am Zentrum für Biomedizin und Medizintechnik (CBTM) der Medizinischen Fakultät Mannheim sowie mit Arbeitsgruppen in Paris und Lyon zusammen. Sie studierten die vier Tage andauernde Entwicklung des habenularen Nervennetzes über Langzeit-Zeitrafferaufnahmen in Verbindung mit Laser-Manipulationen und selbst entwickelter Computer-Software (siehe Abbildung). Dabei konnten die Wissenschaftler zeigen, dass die Kommunikation zwischen den beiden Gehirnhälften notwendig ist, damit die habenularen Nervenbahnen auf beiden Seiten des Gehirns ihr Ziel finden.

Auf ihrem Weg durch das Gehirn kreuzen die Nervenbahnen ein zweites Nervennetz, das die beiden Gehirnhälften miteinander verbindet und seinen Ursprung im Gehirnbereich des Thalamus hat. Diese thalamischen Nervenzellen senden Signale an die habenularen Nervenzellen, die Ihnen anzeigen, zu welchem Zeitpunkt sie ihre Nervenbahnen ausformen sollen.

Zerstört man nämlich die thalamischen Nerven mit einem Laser auf einer Seite des Gehirns, ist das synchrone Wachstum der habenularen Nervenbahnen gestört und die Verbindungen zwischen den Gehirnhälften werden nicht mehr gebildet. Dies hat zur Folge, dass die Nervenbahnen auf beiden Seiten des Gehirns aufhören zu wachsen. Das bedeutet, dass ein Nervennetz (Habenula) zum Wachstum der eigenen Nervenbahnen ein zweites Nervennetz (Thalamus) benötigt, und zwar für die Kommunikation zwischen den beiden Seiten des Gehirns.

„Die Entdeckung dieses neuen Mechanismus der Nervennetzentstehung war bis zum heutigen Zeitpunkt schlichtweg nicht möglich. Erst die Weiterentwicklung von Mikroskopie-Techniken und Bildgebungsverfahren in Kombination mit unserem bislang einzigartigen Assay haben es jetzt erlaubt, Netzwerke in lebenden Organismen über einen so langen Zeitraum filmen zu können, ohne mit ihrer Entwicklung zu interferieren. Diese Filme sind sehr anschauliches Lehrmaterial für unsere Studenten und für uns im Labor wird es natürlich jetzt spannend, die Moleküle zu identifizieren, die die beiden Gehirnhälften miteinander sprechen lassen“, so PD Dr. Carl.

Bislang war eine kommunikative Rolle von Nervenbahnen, die die Gehirnhälften miteinander verbinden, nur bei der Gehirnfunktion bekannt. Dass diese Kommissuren auch während der Entstehung von Nervennetzen eine so fundamentale Rolle zu spielen scheinen, ist neu. Die Forscher halten es für gut denkbar, dass der entdeckte Mechanismus auch von anderen Nervennetzen zur Entstehung genutzt werden könnte.

DOI: http://dx.doi.org/10.1016/j.cub.2016.11.038 – Publikation

Media Contact

Dr. Eva Maria Wellnitz idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer