Sonnenschutz für Blaualgen: Wie sich Cyanobakterien vor zu viel Licht schützen

Es mag widersprüchlich klingen, dass sich ein photosynthetischer Organismus vor Licht schützen muss, aber zu viel des Guten bleibt nicht ohne schädliche Folgen. Cyanobakterien (Blaualgen) haben verschiedene Strategien, mit denen sie sich vor zu viel Licht schützen.

Die molekularen Grundlagen eines dieser Schutzmechanismen haben Bochumer Biologen mit modernsten massenspektrometrischen Verfahren untersucht. Sie konnten beobachten, dass das Bakterium bei zu viel Licht eine „Stress“-Kopie eines wichtigen Proteins herstellt, das an der Photosynthese beteiligt ist.

Es erlaubt ihm, mehr Licht in harmlose Wärmestrahlung umzuwandeln. Lässt der Lichtstress nach, wird wieder das normale Protein hergestellt. Die Forscher berichten im Journal of Biological Chemistry.

Extrem anpassungsfähig

Cyanobakterien – ehemals Blaualgen genannt – sind so anpassungsfähig, dass sie von der Arktis über die Wüste bis hin zu heißen Quellen vorkommen. Marine Cyanobakterien sind ein wichtiger Klimafaktor, da sie erheblich zur globalen CO2-Fixierung beitragen. Als photosynthetische Bakterien können sie Licht in Energie umwandeln. Grundlage dafür ist die photosynthetische Elektronentransportkette.

Aktive Komponenten sind große Membranproteinkomplexe, die das Licht einfangen und für den Transport von Elektronen nutzen. Einer dieser Komplexe – das Photosystem 2 – katalysiert eine in der Natur einzigartige Reaktion: die Photolyse von Wasser. Als Nebenprodukt der Photolyse wird Sauerstoff freigesetzt, der die Grundlage für alles tierische Leben auf der Erde darstellt. „Somit waren es die Cyanobakterien, die vor ca. 3,5 Milliarden Jahren für eine sauerstoffhaltige Atmosphäre sorgten und damit letztendlich auch den Lebensraum des Menschen schufen“, unterstreicht Dr. Marc Nowaczyk.

Warum zu viel Licht schädlich ist

Auch wenn Cyanobakterien – wie alle photosynthetischen Organismen – Licht als Energiequelle für ihren Stoffwechsel nutzen, ist zu viel Licht schädlich. Insbesondere schwankende Lichtintensitäten führen zu einem Ungleichgewicht innerhalb der Elektronentransportkette und gegenüber nachgeschalteten Reaktionen. Das kann bewirken, dass Elektronen nicht schnell genug abgeführt werden können, was Rückreaktionen begünstigt. Besonders das Photosystem 2 ist als erster Komplex in der Kette von diesem Prozess betroffen: Es werden vermehrt Sauerstoffradikale gebildet, die extrem schädlich für die Zelle sind.

Trick der Cyanobakterien zur Vorbeugung

Das Photosystem 2 besitzt einen äußert effizienten und einzigartigen Reparaturmechanismus, der Gegenstand aktueller Forschung ist. „Hauptschädigungsort im Komplex ist das zentrale D1-Protein, das selektiv abgebaut und kontinuierlich durch eine neue Kopie ersetzt wird“, erklärt Dr. Nowaczyk. „Dieser Reparaturzyklus sorgt dafür, dass der photosynthetische Elektronentransport trotz Lichtstress aufrecht erhalten werden kann.“ Cyanobakterien haben darüber hinaus eine Strategie entwickelt, die schon vor einer Schädigung des Proteins ansetzt: Sie besitzen eine Genfamilie, die verschiedene D1-Proteine kodiert. Bereits in früheren Studien konnte durch Genexpressionsanalysen gezeigt werden, dass eine dieser Kopien nur unter Lichtstress gebildet wird. „Durch modernste massenspektrometrische Verfahren konnten wir diesen Effekt nun erstmals auch direkt auf Proteinebene nachvollziehen und durch Studien an D1-Mutanten Einblicke in die molekularen Grundlagen des Schutzmechanismus gewinnen“, so Dr. Nowaczyk.

Die alternative „Stress“-Kopie des D1-Proteins bewirkt, dass der Komplex insgesamt einen größeren Anteil des empfangenen Lichts in harmlose Wärmestrahlung umwandeln kann. Somit wird auf Kosten der Effizienz einer Schädigung vorgebeugt. Ändern sich die Lichtbedingungen erneut, wird wieder die „normale“ D1-Kopie gebildet und der Komplex nutzt das eingestrahlte Licht wieder äußerst effizient für die Photosynthese. „Gerade diese molekulare Variabilität ist die Grundlage für die erfolgreiche Besiedelung verschiedenster Lebensräume mit unterschiedlichsten Lebensbedingungen“, folgern die Forscher.

Titelaufnahme

Julia Sander, Marc Nowaczyk, Joachim Buchta, Holger Dau, Imre Vass, Zsuzsanna Deak, Marta Dorogi, Masako Iwai, and Matthias Rögner: Functional Characterization and Quantification of the Alternative PsbA Copies in Thermosynechococcus elongates and Their Role in Photoprotection. In: The Journal of Biological Chemistry, Vol. 285, Issue 39, 29851-29856, DOI 10.1074/jbc.M110.127142

Weitere Informationen

Dr. Marc Nowaczyk, Lehrstuhl für Biochemie der Pflanzen (Prof. Dr. Matthias Rögner), Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24549, E-Mail: Marc.M.Nowaczyk@rub.de

Redaktion: Meike Drießen

Media Contact

Dr. Josef König idw

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer