Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenlicht - Energiequelle für die Erde

09.02.2010
Ein Treffen im Juli 2009 im Kloster Seeon am Chiemsee brachte 30 führende Chemiker aus China, Deutschland, Großbritannien, Japan und den USA unter der Überschrift "Powering the World with Sunlight" zusammen.

Über dieses "First Annual Chemical Sciences and Society Symposium" (CS3), das als Klausurtagung angelegt war, ist Ende Januar 2010 ein Weißbuch in deutscher Sprache erschienen: Sonnenlicht als Energiequelle für die Erde.

Es geht vor allem ein auf die künstliche Photosynthese ("Wenn es ein Blatt kann, können wir es auch"), auf die Nutzung von Sonnenenergie, die in Biomasse gespeichert ist, auf die Konversion von Solarenergie in elektrische Energie (nächste Generation von Photovoltaik-Systemen) und auf die Speicherung von Solarenergie.

Die enge Beziehung zwischen Energie und Chemie macht die Lösung der Energieprobleme zu einer besonderen Herausforderung für die chemische Wissenschaft. "Insbesondere spielt die Chemie eine wichtige Rolle bei der Umwandlung und Speicherung von Sonnenenergie", betont Professor Dr. Klaus Müllen, Vizepräsident der Gesellschaft Deutscher Chemiker (GDCh), die die Federführung beim Seeoner Treffen hatte. Nach zwei Tagen intensiver Diskussion wurden deren Ergebnisse im Abschlussplenum zusammengefasst und im Konsens aller anwesenden Wissenschaftler verabschiedet. Auf dieser Grundlage wurde das Weißbuch erarbeitet, das die GDCh-Geschäftsstelle in Frankfurt kostenlos abgibt.

Unter dem Begriff künstliche Photosynthese versteht man Prozesse, die die Sonnenenergie in chemische Energie umwandeln. Genau das ist es, was Pflanzen bei der natürlichen Photosynthese machen. Sie nehmen Kohlendioxid (CO2) und Wasser (H2O) auf und produzieren daraus Sauerstoff (O2) und Kohlenhydrate. Dazu müssen sie Wasser spalten und CO2 umwandeln. In der Chemie sind das zwei interessante Prozesse, die zum einen zum Wasserstoff führen, der als künftiger Energieträger in der Diskussion ist, und zum anderen das Treibhausgas CO2 nutzbringend verwerten. So wollen die Chemiker Katalysatoren entwickeln, die zum einen eine photokatalytische Wasserspaltung ermöglichen und zum anderen in der Lage sind, das äußerst stabile CO2 zu reduzieren. Könnte es gelingen, beide Prozesse zu verknüpfen, hätte man eine Art künstliches Blatt geschaffen.

Sonnenenergie wird in der Natur zu Biomasse umgewandelt. Pflanzen sind also die natürlichen Speicher der Sonnenenergie, aus denen man nun Biokraftstoffe und Rohstoffe für die chemische Industrie gewinnen möchte. Das darf nicht in Konkurrenz zur Nahrungsmittelproduktion geschehen, weder was die Pflanzen noch die Flächennutzung angeht. Also möchten die Chemiker versuchen, Abfälle aus der Land- und Forstwirtschaft sowie aus der Nahrungsmittelproduktion als Rohstoffbasis für Kraftstoffe und für die chemische Industrie zu nutzen. Da das für den künftigen Bedarf nicht reichen würde, muss natürlich auch andere Biomasse, insbesondere Non-Food Biomasse, beispielsweise Holz, chemisch konvertiert werden. Seit Menschengedenken ist der einfachste Fall einer solchen chemischen Konvertierung bekannt: die Verbrennung, um Wärmeenergie zu erzeugen. Aber in der Chemie wie in der Gesellschaft wird eher an eine Umwandlung zu Wertstoffen gedacht, zu denen Biokraftstoffe zählen. Dazu Professor Dr. Ferdi Schüth vom Max-Planck-Institut für Kohlenforschung (Mülheim/Ruhr): "Kraftstoffe und Rohstoffe werden sich noch am ehesten aus Biomasse gewinnen lassen. Aber die Behauptung, Biomasse könne die Weltenergieprobleme weitgehend lösen, halte ich für übertrieben."

Als dringendes von der Forschung zu lösendes Problem sahen die Wissenschaftler die Entwicklung von Materialien für Photovoltaik-Systeme der nächsten Generation an. Diese Systeme sollten deutlich preisgünstiger als die gegenwärtig etablierten Silicium-basierten Solarzellen sein. Die neuen Materialien sollten Elemente und Rohstoffe enthalten, die ausreichend zur Verfügung stehen und die nicht toxisch sind. Während die gegenwärtigen, nur sehr energieaufwändig herstellbaren Silicium-Solarzellen zwar immer noch weiter verbessert werden - so kommen sie heute bei einem Modul-Wirkungsgrad von bis zu 18 Prozent mit etwa 50 Prozent weniger Silicium als noch vor sieben Jahren aus -, wurden mittlerweile Dünnschicht-Solarzellen entweder aus amorphem Silicium oder aus anderen anorganischen Mischhalbleitern wie beispielsweise Kupfer-Indium-Gallium-Selenid oder Cadmiumtellurid entwickelt. Solche Solarzellen mit einem Wirkungsgrad bis zu zwölf Prozent sind kostengünstiger, weil materialsparender, aber das Material ist instabiler gegenüber Licht, zudem wirken Selen, Cadmium oder Tellur toxisch.

Zu den Photovoltaik-Konzepten der nächsten Generation zählen Farbstoff-sensibilisierte Solarzellen, die sichtbares Licht absorbierende (metall)organische Farbstoffe enthalten und auf nanokristallinem, sehr preiswertem Titandioxid als Halbleiter gebunden sind. Im Labor ermittelte Effizienzen liegen derzeit bei über elf Prozent, und erste Prototypen für die sonnengetriebene Beladung von Akkus oder für transparente, photovoltaisch aktive Glasbeschichtungen liegen schon vor.

Große Hoffnungen werden auf organische Solarzellen gesetzt, deren aktive Komponenten entweder aus halbleitfähigen Polymeren oder aus niedermolekularen organischen Halbleitern bestehen. Wie Professor Dr. Peter Bäuerle von der Universität Ulm in Seeon ausführte, werden inzwischen schon Wirkungsgrade von sechs bis sieben Prozent erreicht, und die Vision ist, dass man zukünftig großflächige photovoltaische Elemente auf flexiblen Unterlagen in einem kontinuierlichen Prozess wie Zeitungen sehr kostengünstig drucken will. Für diese zukunftsträchtigen Technologien werden aber verbesserte organische Materialien benötigt - eine Herausforderung für die chemische Forschung.

Bleibt noch die Frage der Energiespeicherung. Professor Daniel Nocera vom Massachusetts Institut of Technology wies darauf hin, dass die Natur chemische (Brenn-)Stoffe zur Speicherung von Sonnenenergie gewählt hätte, weil chemische Bindungen die höchsten Energiedichten aufwiesen. Prinzipiell böten sich auch für die künftige Energieversorgung solche chemischen Speichermedien, beispielsweise Methanol, an, sagte Professor Dr. Robert Schlögl vom Fritz-Haber-Institut in Berlin. Habe man zunächst nur an Wasserstoff als chemischem Energiespeicher gedacht habe, würde man nun Alternativen durchdenken.

Die Entwicklung neuer Batteriesysteme zur Speicherung elektrischer Energie war lange vernachlässigt worden, jetzt erhofft man sich für die kommenden Jahre den Durchbruch für leistungsfähigere Systeme. Professor Dr. Jürgen Janek von der Universität Gießen machte deutlich, dass diese Art der Energiespeicherung aber nicht nur ein Problem der Chemie sei, sondern der Koordination und Organisation. Ein über ein Netz verbundenes Batteriespeichersystem müsse sorgfältig durchdacht, konzipiert und organisiert werden.

Die CS3-Diskussionen wurden bei einem Embassy Networking Dinner im August 2009 im Deutschen Haus in Washington aufgegriffen, zu dem die Deutsche Botschaft, die GDCh, die American Chemical Society (ACS) und die Deutsche Forschungsgemeinschaft (DFG) führende amerikanische und deutsche Wissenschaftler eingeladen hatten, um das Thema Energie und Lösungsansätze aus der Chemie zu diskutieren. Schlögl und Nocera stellten eingangs die Highlights aus CS3 vor. Es wurde ein bilateraler Aktionsplan zur Förderung der Energieforschung für die kommenden drei Jahre angestoßen. Deutlich wurde, dass für die Umstellung auf eine nachhaltige Energieversorgung erhebliche Geldmittel erforderlich sind und dass die Solarenergieforschung hohe Priorität hat. Ein weltweit einheitliches System der nachhaltigen Energieversorgung sei jedoch nicht umsetzbar und auch nicht anzustreben. Wissenschaftler sollten sich verstärkt für die Energiewissenschaften engagieren und der Öffentlichkeit und Politik den wichtigen Beitrag der Chemie zur Energieforschung besser verdeutlichen.

Die Gesellschaft Deutscher Chemiker (GDCh) ist mit rund 29.000 Mitgliedern eine der größten chemiewissenschaftlichen Gesellschaften weltweit. Sie veranstaltet internationale und nationale Tagungen sowie Fortbildungskurse zu allen Gebieten der Chemie, gibt international renommierte Fachpublikationen sowie allgemein interessierende Informationsbroschüren heraus. 2006 wurden die GDCh-Energieinitiative und der Koordinierungskreis Chemische Energieforschung ins Leben gerufen, die bewusst machen sollen, dass Chemiker in hohem Maße zur Lösung des Energieproblems beitragen können.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://www.gdch.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics