Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Software mit Grips

20.04.2018

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive Nervenzellen kann das Gehirn größere Populationen von Nervenzellen zu funktionellen Einheiten zusammenführen. Bislang haben Neurowissenschaftler oft diese und andere Eigenschaften nur mit Netzwerkmodellen untersucht, die jeweils nur eine davon nachstellen können.


Ein in die Membran einer Nervenzelle eingebetteter Ionenkanal im Querschnitt. Der Engpass im Innern des Proteins, die Kanalpore, bestimmt, welches Ion (rot, grün) durchgelassen wird. Ionenkanäle beeinflußen maßgeblich die elektrischen Aktivität von Nervenzellen – und neuesten Erkenntnissen zufolge sogar die Eigenschaften ganzer Nervenzell-Netzwerke.

© MPI f. experimentelle Medizin


Aus Elektronenmikroskopie-Bildern (grau) rekonstruierte Nervenzellen aus der Großhirnrinde einer Maus. Jede Nervenzelle steht mit tausenden anderen Zellen in Kontakt. Die Eigenschaften der so entstehenden Netzwerke ergründen Wissenschaftler am Computer mithilfe von Computersimulationen.

© MPI für Hirnforschung/ Berning, Boergens, Helmstaedter

Wissenschaftlerinnen des Max-Planck-Instituts für Hirnforschung in Frankfurt haben nun gezeigt, wie sich mit einem dieser Modelle mehrere Eigenschaften parallel untersuchen lassen. Ihren Berechnungen zufolge haben sie eine gemeinsame Basis: die Ionenkanäle in der Zellmembran, die die elektrische Erregbarkeit von Nervenzellen steuern.

Synaptische Plastizität ist dagegen für die Ausbildung dieser Eigenschaften nicht erforderlich. Mit dieser Erkenntnis lässt sich beispielsweise erklären, warum manche Psychopharmaka weitreichende Nebenwirkungen haben können.

„Nur was ich nachbauen kann, verstehe ich.“ Getreu dieser Feststellung des US-amerikanischen Physikers Richard Feynman versuchen Neurowissenschaftler, das menschliche Gehirn im Computer virtuell nachzubauen. Der Großhirnrinde gilt dabei die besondere Aufmerksamkeit der Forscher, da sie für die die meisten höheren geistigen Fähigkeiten verantwortlich ist.

Eines der in den letzten Jahren entwickelten Computermodelle der Großhirnrinde ist das sogenannte Stabilisierte Supralineare Netzwerkmodell (SSN). Es beruht unter anderem auf der Annahme, dass sich Eingangs- und Ausgangssignale nicht linear zueinander verhalten. Die virtuellen Nervenzellen des Modells sind also so ausgelegt, dass eine leichte Zunahme des Inputs einen drastisch stärkeren Output hervorrufen kann.

Das SSN besteht aus Elementen, die sich gegenseitig aktivieren oder hemmen, so wie auch das Gehirn aus erregenden und hemmenden Nervenzellen besteht. Die Verbindungen zwischen den Elementen – die virtuellen Synapsen – sind dagegen unveränderlich. Im Gegensatz zu den Synapsen der Großhirnrinde können die Verknüpfungen im SSN folglich nicht verstärkt oder abgeschwächt werden.

Aus früheren Studien ist bekannt, dass das SSN wichtige Eigenschaften für die Verarbeitung von Eingangssignalen mitbringt, wie sie zum Beispiel die Zentren der Großhirnrinde besitzen, die Sehinformationen verarbeiten. Dazu gehören beispielsweise die Normierung unterschiedlich starker Sehreize, die Verstärkung der Aktivität für schwache Kontraste sowie die Unterdrückung benachbarter Reize. Könnte ein solches Netzwerk aber auch anderen Eigenschaften der Großhirnrinde zugrunde liegen?

Den Analysen der Wissenschaftlerinnen am Max-Planck-Institut für Hirnforschung zufolge ist das tatsächlich der Fall: So können die virtuellen Neuronen des SSN dauerhaft aktiv bleiben – auch nachdem das ursprüngliche Aktivierungssignal verstummt ist. „Dies ist eine Voraussetzung für die kurzzeitige Speicherung von Sinnesinformationen – also für das Arbeitsgedächtnis des Gehirns“, erklärt Nataliya Kraynyukova vom Max-Planck-Institut für Hirnforschung.

Darüber hinaus ist das Netzwerkmodell in der Lage, rhythmische Aktivität zu erzeugen. Solche an- und abschwellende Signale sind ein typisches Merkmal der Großhirnrinde und erscheinen beispielsweise im Elektroenzephalogramm als wellenförmige Aktivitätsmuster.

Kurzzeitgedächtnis ohne synaptische Plastizität

Die Ergebnisse zeigen, dass so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und die Normierung von Kontrastverhältnissen eine gemeinsame neuronale Basis haben können: die Ionenkanäle in der Zellmembran. Synaptische Plastizität ist dafür nicht erforderlich. „Dies hat uns völlig überrascht, denn synaptische Plastizität gilt seit einigen Jahren als zentraler Mechanismus für die Speicherung von Information im Gehirn. Aber offenbar gilt dies zumindest nicht für das Kurzzeitgedächtnis“, sagt Tatjana Tchumatchenko.

Dank der neuen Erkenntnisse lässt sich darüber hinaus erklären, warum manche Psychopharmaka neben der erwünschten Wirkung auch unerwünschte Effekte haben: Viele Wirkstoffe verändern die Aktivität bestimmter Ionenkanäle im Gehirn.

„Mehrere Epilepsie- und Migräne-Medikamente Carbamazepin oder Topiramat blockieren beispielsweise die Aktivität spannungsabhängiger Natriumkanäle. Wie wir nun wissen, kann sich dies auf wichtige Fähigkeiten des Gehirns auswirken und beispielsweise das Kurzzeitgedächtnis beeinträchtigen“, erklärt Tchumatchenko.


Kontakt


Dr. Tatjana Tchumatchenko

Nachwuchsgruppenleiterin
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

+49 69 850033-1450

tatjana.tchumatchenko@brain.mpg.de

Dr. Arjan Vink

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Hirnforschung, Frankfurt am Main

+49 69 850033-2900

pr@brain.mpg.de


Originalveröffentlichung
Nataliya Kraynyukova and Tatjana Tchumatchenko

Stabilized supralinear network can give rise to bistable, oscillatory, and persistent activity.

PNAS; 12 March, 2018

Dr. Tatjana Tchumatchenko | Max-Planck-Institut für Hirnforschung, Frankfurt am Main
Weitere Informationen:
https://www.mpg.de/12004922/stabilisiertes-supralineares-netzwerkmodell

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente
17.12.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Kommunikation zwischen neuronalen Netzwerken
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: Quantenkryptographie ist bereit für das Netz

Wiener Quantenforscher der ÖAW realisierten in Zusammenarbeit mit dem AIT erstmals ein quantenphysikalisch verschlüsseltes Netzwerk zwischen vier aktiven Teilnehmern. Diesen wissenschaftlichen Durchbruch würdigt das Fachjournal „Nature“ nun mit einer Cover-Story.

Alice und Bob bekommen Gesellschaft: Bisher fand quantenkryptographisch verschlüsselte Kommunikation primär zwischen zwei aktiven Teilnehmern, zumeist Alice...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kommunikation zwischen neuronalen Netzwerken

17.12.2018 | Biowissenschaften Chemie

Beim Phasenübergang benutzen die Elektronen den Zebrastreifen

17.12.2018 | Physik Astronomie

Pharmazeuten erzielen Durchbruch bei Suche nach magensaftbeständigen Zusätzen für Medikamente

17.12.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics