So beginnt die Herstellung ribosomaler RNA

Die molekulare Struktur des Übergangszustands eines RNA-Polymerase I Initiationskomplexes gelöst mittels Einzelpartikel kryo-Elektronenmikroskopie © Michael Pilsl und Christoph Engel, Nature Communications

Alle höheren Organismen haben es: Das Enzym RNA Polymerase I (Pol I). Es ist dafür zuständig, die sogenannte ribosomale RNA (rRNA) herzustellen. Dazu schreibt Pol I eine bestimmte DNA-Sequenz ab – und zwar außerordentlich effizient. Die hergestellte rRNA wird später zum essenziellen Bestandteil der Proteinfabriken der Zelle (Ribosome).

Damit ist Pol I ein zentraler Spieler in der Regulation des Wachstums aller Zellen. Deshalb möchte die Arbeitsgruppe für Strukturelle Chemie an der Universität Regensburg herausfinden, wie Pol I funktioniert, wie sie rekrutiert und reguliert wird.

Nun ist es der Arbeitsgruppe um Prof. Dr. Christoph Engel gelungen, einen frühen Übergangszustand der Pol I zu stabilisieren und seine Struktur auf molekularer Ebene zu bestimmen. Die Ergebnisse wurden in der Fachzeitschrift Nature Communications veröffentlicht.

Die Struktur zeigt, wie eine native DNA-Sequenz von Proteinen des ‘Core Factor‘ erkannt wird. Durch die Erkennung kann Pol I hochspezifisch rekrutiert werden und direkt mit der Herstellung von rRNA begonnen werden. Um diese Pol I Aktivität zu ermöglichen, muss doppelsträngige DNA zuerst in ihre Einzelstränge getrennt (d. h. geschmolzen) werden.

Die Regensburger Wissenschaftler fanden heraus, dass sich die Mechanismen der Rekrutierung von Pol I und des Schmelzens der DNA grundlegend von verwandten Systemen unterscheiden.

Biochemische Analysen der DNA-Bindungsstärke des Core Factors und der spezifischen Aktivität der Pol I untermauern diese Vermutung. Des Weiteren haben sich strukturelle Elemente im Core Factor entwickelt, die anscheinend zur erfolgreichen DNA-Schmelzung beitragen.

Folglich konnten die Biochemiker zeigen, dass eine Entfernung dieser Elemente im Core Factor dazu führt, dass Pol I ihre Aufgabe nicht mehr ausführen kann. Abschließend hat eine vergleichende Strukturanalyse ergeben, dass es während der Rekrutierung zur Kontraktion des Enzyms Pol I kommt.

Diese Kontraktion drückt doppelsträngige DNA praktisch zusammen und unterstützt dadurch die Trennung der beiden Einzelstränge voneinander. Ein ähnlicher Mechanismus bleibt verwandten Enzymen aufgrund ihrer strukturellen Eigenheiten verwehrt. Die Forscher gehen deshalb davon aus, dass sich Pol I im Laufe der Evolution spezifisch an ihre Aufgabe angepasst hat und daher äußerst effizient agieren kann.

Dank dieser Ergebnisse können die Wissenschaftler nun neue mechanistische Fragestellungen bearbeiten. Beispielsweise: Wie wird festgelegt, an welche DNA-Sequenzen Core Factor und damit Pol I rekrutiert werden? Und: Was ist die Rolle von regulatorischen Proteinen und deren Modifikationen?

Zusätzlich zur Grundlagenforschung erfolgen Bemühungen, Pol I künstlich gezielt zu hemmen. Da vor allem schnell wachsende Zellen, wie z. B. Krebszellen, eine hohe Pol I Aktivität aufweisen, wird eine chemotherapeutische Nutzung solcher Strategien derzeit getestet. Die Analysen der Biochemiker können diese Bestrebungen nun mit Erkenntnissen auf struktureller Ebene unterstützen.

Über die Arbeitsgruppe für Strukturelle Biochemie
Die Arbeitsgruppe für Strukturelle Biochemie ist die erste Tenure-Track Professur an der Universität Regensburg und benutzt modernste Methoden der Einzelmolekülanalyse mittels kryo-Elektronenmikroskopie zur 3D-Visualisierung der Pol I in Aktion.

Ihre Ergebnisse validieren die Biochemiker durch traditionelle Techniken der funktionellen Biochemie um damit ein Gesamtbild der Struktur-Funktionsbeziehungen komplexer molekularer Maschinen zu erlangen. Dafür wird die Gruppe vom Emmy-Noether Programm der Deutschen Forschungsgemeinschaft gefördert und ist Teil des Sonderforschungsbereichs 960 der Fakultät für Biologie und Vorklinische Medizin.

Weitere Informationen finden Sie unter https://www.uni-regensburg.de/biologie-vorklinische-medizin/strukturelle-biochem…

Prof. Dr. Christoph Engel
Arbeitsgruppe für Strukturelle Biochemie
Institut für Biochemie, Genetik und Mikrobiologie
Universität Regensburg
Telefon: 0941 943-2718
E-Mail: christoph.engel@ur.de

Pilsl M and Engel C, Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nature Communications 2020.
DOI: 10.1038/s41467-020-15052-y

Media Contact

Christina Glaser idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-regensburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Prozess- und Produktinnovationen in Deutschland als im EU-Durchschnitt

Mehr als jedes 3. Unternehmen (36 %) in Deutschland hat zwischen 2018 und 2020 (aktuellste Zahlen für die EU-Länder) neue Produkte entwickelt, Neuerungen von Wettbewerbern imitiert oder eigene Produkte weiterentwickelt….

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Partner & Förderer