Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sichtbare Signale aus Hirn und Herz: Neuer Sensor misst Kalziumkonzentration im Gewebe

30.11.2017

Über die Menge an Kalzium in und um Zellen, werden wichtige Prozesse im Körper gesteuert. Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München entwickelte jetzt das erste Sensormolekül, dass Kalzium mit der strahlungsfreien Bildgebungsmethode Optoakustik im lebenden Tieren sichtbar machen kann. Zellen müssen hierfür nicht genetisch verändert werden und es entsteht keine Strahlenbelastung.

Kalzium ist ein wichtiger Botenstoff in unserem Körper. In Nervenzellen entscheiden Kalziumionen zum Beispiel darüber, ob Signale an andere Nervenzellen weitergegeben werden oder nicht. Ob ein Muskel angespannt oder entspannt ist, hängt ebenfalls von der Menge an Kalzium in den Muskelzellen ab. Das gilt auch für unseren wichtigsten Muskel – dem Herz.


Kalziumwellen – ein neuer Sensor verwandelt Licht in Schall, um Kalziumflüsse im Körper sichtbar zu ...

(Bild: B. van Rossum, G. Westmeyer / TUM)

„Weil Kalzium für essentielle Organe wie Herz und Gehirn eine so entscheidende Rolle spielt, würde man gerne ‚live‘ und tief im Gewebe beobachten können, wie sich Kalziumkonzentrationen verändern – auch um fehlgesteuerte Prozesse bei Krankheiten besser zu verstehen. Unser neues Sensormolekül ist ein kleiner erster Schritt in diese Richtung.“, sagt Prof. Gil Gregor Westmeyer, Leiter der Studie und Professor für Molekulare Bildgebung an der TUM, sowie Forschungsgruppenleiter am Helmholtz Zentrum München.

An den Arbeiten, die im „Journal of the American Chemical Society“ veröffentlicht wurden, war auch Prof. Thorsten Bach von der TUM Fakultät für Chemie beteiligt. Die Forscher konnten ihr Molekül bereits in Herzgewebe und Gehirnen von lebenden Zebrafischlarven erfolgreich testen.

Kalzium-Messung auch in tieferen Gewebeschichten möglich

Um den Sensor auch in lebenden Tieren und später vielleicht auch im Menschen nutzbar zu machen, ist er mit einem recht neuen, nicht-invasivem bildgebenden Verfahren messbar: der Optoakustik. Diese Bildgebungsmethode beruht auf der für den Menschen ungefährlichen Ultraschalltechnik und kommt ohne radioaktive Strahlung aus.

Dabei erwärmen Laserimpulse die absorbierenden Sensormoleküle im Gewebe und dehnen sie kurzzeitig aus, so dass in der Folge Ultraschallsignale erzeugt werden. Diese erfassen die Wissenschaftler dann mit entsprechenden Detektoren und ‚übersetzen‘ sie in dreidimensionale Bilder.

Wenn Licht durch Gewebe strahlt, wird es gestreut. Deshalb werden bei Lichtmikroskopen Bilder schon in weniger als einem Millimeter Tiefe unscharf. Hier liegt der weitere Vorteil der Optoakustik: Ultraschall wird kaum abgelenkt und liefert noch scharfe Bilder in mehreren Zentimetern Tiefe.

Gerade für das Gehirn ist das interessant, da bisherige Verfahren nur wenige Millimeter unter die Hirnoberfläche gelangen. Das Gehirn hat aber eine so komplexe dreidimensionale Struktur mit unterschiedlichsten Funktionsbereichen, dass die Oberfläche nur einen kleinen Teil ausmacht. Das Ziel der Forscher ist es deshalb, mit dem neuen Sensor tief im Gewebe Kalziumveränderungen zu messen. Erst Ergebnisse bekamen sie bereits aus den Gehirnen von Zebrafischlarven.

Ungiftig und strahlungsfrei

Die Wissenschaftlerinnen und Wissenschaftler haben das Sensormolekül zudem so entworfen, dass es von lebenden Zellen einfach aufgenommen werden kann. Er ist darüber hinaus nicht schädlich für das Gewebe und arbeitet mit einem Farbumschlag. Wenn der Sensor an Kalzium bindet, ändert sich seine Farbe, was wiederum das Licht-induzierte Optoakustiksignal verändert.

Bei vielen bisherigen bildgebenden Verfahren, mit denen sich Kalziumveränderungen sichtbar machen lassen, müssen Zellen genetisch verändert werden. Sie erhalten dann zum Beispiel die Fähigkeit zu leuchten, wenn sich die Menge an Kalzium in der Zelle ändert. Das Problem hierbei ist, dass ein solcher genetischer Eingriff beim Menschen nicht möglich ist.

Mit dem neuen Sensor ließe sich diese Limitierung umgehen, sagen die Wissenschaftler. In Zukunft sollen die Eigenschaften des Moleküls aber noch weiter verfeinert werden, so dass die Sensorsignale in noch tieferen Gewebeschichten gemessen werden können. Hierzu muss das Team um Gil Gregor Westmeyer noch weitere Varianten des Moleküls generieren, die im langwelligeren, für Menschen nicht mehr sichtbaren, Bereich des Lichts absorbieren.

Originalpublikation
Roberts S., Seeger M., Jiang Y., Mishra A., Sigmund F., Stelzl A., Lauri A., Symvoulidis P., Rolbieski H., Preller M., Deán-Ben X.L., Razansky D., Orschmann T., Desbordes S., Vetschera P., Bach T., Ntziachristos V., Westmeyer G.G., Calcium Sensor for Photoacoustic Imaging, Journal of the American Chemical Society (JACS), Oktober 2017, DOI: 10.1021/jacs.7b03064
http://pubs.acs.org/doi/abs/10.1021/jacs.7b03064

Kontakt
Prof. Dr. Gil Gregor Westmeyer
Technische Universität München
Professor für Molekulare Bildgebung
Tel.: +49 (0) 89 3187-2123
gil.westmeyer@tum.de

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/34325/ - Diese Meldung im Web
http://www.professoren.tum.de/westmeyer-gil/ - Professorenprofil von Gil Gregor Westmeyer
https://www.tum.de/die-tum/aktuelles/ - Alle Pressemitteilungen der TU München

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Gewebe Kalzium Kalziumkonzentration Muskel Nervenzellen Sensor

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Plötzlich gealtert
16.01.2019 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Klettverschluss für menschliche Zellen
16.01.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Roter Riesenvollmond in den Morgenstunden des 21. Januar

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Frühaufsteher sind diesmal im Vorteil: Wer am Morgen des 21. Januar 2019 vor 6:45 Uhr einen Blick an den Himmel wirft, kann eine totale Mondfinsternis bestaunen. Dann leuchtet der sonst so strahlende Vollmond zwischen den Sternbildern Zwillingen und Krebs glutrot.

Um das Finsternis-Spektakel in seiner gesamten Länge zu verfolgen, muss man allerdings sehr früh aus dem Bett: Kurz nach 4:30 Uhr beginnt der Mond sich langsam...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

Unsere digitale Gesellschaft im Jahr 2040

16.01.2019 | Veranstaltungen

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

So schnell erwärmen sich die Dauerfrostböden der Welt

16.01.2019 | Geowissenschaften

Wirken Strahlen besser mit Gold?

16.01.2019 | Förderungen Preise

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics