Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selektiv löschbare 3-D-Tinten

01.08.2018

Im 3-D-Druck über direktes Laserschreiben lassen sich mikrometergroße Strukturen für viele Anwendungsbereiche fertigen – von der Biomedizin über die Mikroelektronik bis hin zu optischen Metamaterialien. Forscherinnen und Forscher am Karlsruher Institut für Technologie (KIT) haben nun 3-D-Tinten entwickelt, die sich selektiv löschen lassen. Dies ermöglicht, hoch präzise Strukturen auf der Mikro- und Nanoskala gezielt abzubauen und wieder aufzubauen. In der Zeitschrift Nature Communications stellt das Team die neuen Fotolacke vor. (DOI: 10.1038/s41467-018-05234-0)

Der 3-D-Druck gewinnt stetig an Bedeutung, da er das effiziente Fertigen auch komplexer Geometrien ermöglicht. Als besonders vielversprechendes Verfahren gilt das direkte Laserschreiben: Ein computergesteuerter fokussierter Laserstrahl fungiert als Stift und erzeugt die gewünschte Struktur in einem Fotolack. So lassen sich dreidimensionale Strukturen mit Details im Submikrometerbereich herstellen.


Dreidimensionale Mikrostrukturen aus verschiedenen spaltbaren Fotolacken. Die Rasterelektronenmikroskopaufnahmen zeigen den selektiven Abbau der Strukturen. (Skalierung 20 µm)

Abb.: Nature Communications

„Die hohe Auflösung ist besonders attraktiv für Anwendungen, die hoch präzise filigrane Strukturen erfordern, wie in der Biomedizin, in der Mikrofluidik, in der Mikroelektronik oder für optische Metamaterialien“, erklären Professor Christopher Barner-Kowollik, Leiter der Arbeitsgruppe Makromolekulare Architekturen am Institut für Technische Chemie und Polymerchemie (ITCP) des KIT und der Soft Matter Materials Group an der Queensland University of Technology (QUT) in Brisbane, sowie Dr. Eva Blasco vom ITCP des KIT.

Bereits vor mehr als einem Jahr war es Forscherinnen und Forschern des KIT gelungen, die Möglichkeiten des direkten Laserschreibens entscheidend zu erweitern: Die Arbeitsgruppen von Professor Martin Wegener am Institut für Angewandte Physik (APH) und am Institut für Nanotechnologie (INT) des KIT und von Professor Christopher Barner-Kowollik entwickelten eine löschbare Tinte für den 3-D-Druck. Dank einer reversiblen Bindung lassen sich die Bausteine der Tinte wieder voneinander trennen.

Nun haben die Wissenschaftler aus Karlsruhe und Brisbane ihre Neuerung wesentlich verfeinert. Wie sie in der Zeitschrift Nature Communications berichten, haben sie mehrere Tinten entwickelt, sozusagen in verschiedenen Farben, die sich unabhängig voneinander löschen lassen. Dies erlaubt es, die lasergeschriebenen Mikrostrukturen selektiv und sequenziell abzubauen und wieder aufzubauen.

So lassen sich beispielsweise bei besonders komplexen Konstruktionen temporäre Stützen errichten und im weiteren Konstruktionsprozess wieder entfernen. Bei dreidimensionalen Gerüsten für das Zellwachstum könnte es möglich sein, Teile zu entfernen und hinzuzufügen, um zu beobachten, wie die Zellen auf solche Veränderungen reagieren. Außerdem gestatten die gezielt löschbaren 3-D-Tinten den Austausch beschädigter oder verschlissener Teile in komplexen Konstruktionen.

Bei der Herstellung der spaltbaren Fotolacke ließen sich die Forscher von abbaubaren Biomaterialien inspirieren: Die Fotolacke basieren auf Silanverbindungen, die sich leicht trennen lassen. Bei Silanen handelt es sich um Silizium-Wasserstoff-Verbindungen.

Die Wissenschaftler bereiteten sie durch gezielten Atomaustausch für die Fotolacke auf. So lassen sich Mikrostrukturen gezielt unter milden Bedingungen abbauen, ohne dabei Strukturen mit anderen Materialeigenschaften zu beschädigen – ein wesentlicher Vorteil gegenüber früheren löschbaren 3-D-Tinten. Die neuen Fotolacke enthalten außerdem das Monomer Pentaerythritoltriacrylat, das den Schreibprozess wesentlich verbessert, ohne die Löschbarkeit zu beeinträchtigen.

Originapublikation (Open Access):
David Gräfe, Andreas Wickberg, Markus Michael Zieger, Martin Wegener, Eva Blasco & Christopher Barner-Kowollik: Adding chemically selective subtraction to multi-material 3D additive manufacturing. Nature Communications. 2018. DOI: 10.1038/s41467-018-05234-0

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Weiterer Pressekontakt:

Regina Link
Redakteurin/Pressereferetin
Tel.: +49 721 608-21158
E-Mail: regina.link@kit.edu

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick in die dunkle Materie des Genoms
20.11.2019 | Max-Planck-Institut für molekulare Genetik

nachricht Neuer Weg entdeckt, um Killerzellen «umzuprogrammieren»
19.11.2019 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Im Focus: Eine Fernsteuerung für alles Kleine

Atome, Moleküle oder sogar lebende Zellen lassen sich mit Lichtstrahlen manipulieren. An der TU Wien entwickelte man eine Methode, die solche „optischen Pinzetten“ revolutionieren soll.

Sie erinnern ein bisschen an den „Traktorstrahl“ aus Star Trek: Spezielle Lichtstrahlen werden heute dafür verwendet, Moleküle oder kleine biologische Partikel...

Im Focus: Atome hüpfen nicht gerne Seil

Nanooptische Fallen sind ein vielversprechender Baustein für Quantentechnologien. Forscher aus Österreich und Deutschland haben nun ein wichtiges Hindernis für deren praktischen Einsatz aus dem Weg geräumt. Sie konnten zeigen, dass eine besondere Form von mechanischen Vibrationen gefangene Teilchen in kürzester Zeit aufheizt und aus der Falle stößt.

Mit der Kontrolle einzelner Atome können Quanteneigenschaften erforscht und für technologische Anwendungen nutzbar gemacht werden. Seit rund zehn Jahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

20.11.2019 | Materialwissenschaften

Eisberge als Nährstoffquelle - Führt der Klimawandel zu mehr Eisendüngung im Ozean?

20.11.2019 | Geowissenschaften

Gehen verändert das Sehen

20.11.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics