Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstpumpender Mikroschlauch

18.12.2018

Rascher kontrollierter Transport von Wassertröpfchen durch Sonnenlicht-getriebene Pumpe

Angetrieben von natürlichem oder künstlichem Sonnenlicht transportiert eine neuartige „Mikroschlauchpumpe“ Wassertröpfchen kontrolliert auch über lange Strecken. Wie chinesische Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, besteht die Pumpe aus einem Schlauch, dessen Eigenschaften sich durch eine Bestrahlung auf asymmetrische Weise ändern lassen. So entstehen Kapillarkräfte und ein Gradient der Benetzbarkeit der Innenwand, deren Zusammenwirken die Wassertröpfchen außergewöhnlich stark beschleunigt.


Die „Mikroschlauchpumpe“ transportiert Wassertröpfchen angetrieben von Sonnenlicht.

(c) Wiley-VCH

Moderne molekulare Analyse- und Diagnosemethoden arbeiten meist mit winzigen Flüssigkeitsmengen. Auch in der Synthese wird inzwischen auf die Mikrofluid-Technik zurückgegriffen, bei der Reaktionen in Mikrokanälen und miniaturisierten Apparaten stattfinden.

Um solche kleinen Volumina präzise von einer Stelle zu einer anderen zu transportieren, haben Wissenschaftler von der Tsinghua und der Beihang University in Peking eine „Mikroschlauchpumpe“ entwickelt.

Die Pumpe besteht aus einem Polymerschlauch von ca. 500 µm Durchmesser, der aus zwei Schichten aufgebaut ist. Die äußere besteht aus Polydimethylsiloxan (PDMS), dem die Forscher um Chun Li, Zhiping Xu und Liangti Qu reduziertes Graphenoxid (rGO) beimischten, ein Kohlenstoff-basiertes Nanomaterial, das das Spektrum des Sonnenlichts besonders gut absorbiert und dabei stark erhitzt wird.

Die Wärme wird auch auf die innere Beschichtung der Schlauchwand übertragen. Sie besteht aus Poly-N-Isopropylacrylamid (PNIPAm), einem Polymer, das bei Raumtemperatur ein Hydrogel bildet: Die Polymerketten sind dann zu einem Netzwerk verknäuelt, das durch Einlagerung von Wasser aufgequollen ist.

Ab etwa 32 °C kollabiert das Hydrogel zu kompakten Kügelchen, die die Innenwand wasserabweisend machen. Zudem schrumpft die innere Schicht, sodass der Innendurchmesser des Schlauches größer wird.

Wird der Schlauch nur an einem Ende bestrahlt, entsteht zum Einen ein Gradient der Benetzbarkeit der inneren Wand. Zum Anderen entsteht eine Asymmetrie der Schlauchgeometrie, da der Innendurchmesser nur am bestrahlten Ende geweitet ist.

Ein Wassertröpfchen wird im Schlauch aufgrund der Kapillarkräfte in Richtung des engeren Durchmessers, also des nicht bestrahlten Endes, gezogen. Da die Innenwand im bestrahlten Bereich zudem schlecht benetzbar ist, wird das Wassertröpfchen zusätzlich beschleunigt.

Durch die Synergie der beiden Mechanismen lassen sich hohe Vorwärtsgeschwindigkeiten erreichen, die über die Stärke der Bestrahlung reguliert werden können.

Nach der Bestrahlung kühlt sich der Schlauch sehr schnell wieder ab, das Hydrogel stellt seine ursprünglichen Eigenschaften wieder her und kann erneut bestrahlt werden.

Dank des flexiblen Materials sind nicht nur gerade, sondern auch gekrümmte, meterlange Schläuche herstellbar, in denen Wasser kontinuierlich über weite Strecken transportiert werden kann.

Es lassen sich zudem verzweigte Systeme herstellen, die gleichzeitig oder in Folge an verschiedenen Stellen bestrahlt werden können. So lassen sich z.B. einzelne, unterschiedliche Reagenzien enthaltende Tröpfchen gezielt in einer bestimmten Reihenfolge transportieren und miteinander vereinigen – etwa für diagnostische Tests oder wenn Wassertröpfchen als Mikroreaktoren für chemische Reaktionen genutzt werden.

Angewandte Chemie: Presseinfo 34/2018

Autor: Liangti Qu, Beijing Insitute of Technology (China), http://cce.bit.edu.cn/kyjgjktz/qltktz/index.htm

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Originalpublikation:

https://doi.org/10.1002/ange.201808835

Weitere Informationen:

http://presse.angewandte.de/

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics