Selbstorganisierende Moleküle: Zweiseitige Nanoringe

Rasterkraftmikroskopische Aufnahme einzelner Ringe. Der größte hat einen Durchmesser von etwa 500 Nanometern. © UDE/CENIDE

Man nehme etwas Chloroform, einige Milligramm Polymer und mische diese Lösung mit einer Seifenmixtur. Daraus entsteht eine Emulsion, aus der über mehrere Tage langsam Chloroform entweicht. Zurück bleiben kleine Polymer-Nanopartikel, die im Inneren aus kleinen Ringen bestehen.

Das Gebilde sieht aus wie ein gestreiftes Osterei: Viele Ringe liegen übereinander, die größten in der Mitte, die kleinsten oben und unten. Um sie zu stabilisieren, werden sie durch chemische Bindungen im Kern vernetzt und anschließend voneinander getrennt.

„Es ist generell schwierig, aus so weicher Materie wie Polymeren Ringe herzustellen“, erklärt Andrea Steinhaus, Doktorandin in der Arbeitsgruppe von Junior-Professor André Gröschel. „Aber wir haben eine gute Möglichkeit gefunden, die zudem leicht skalierbar ist. Das ist im Hinblick auf eine mögliche industrielle Herstellung natürlich immens wichtig.“

Dem Team um Steinhaus ist es zudem erstmals gelungen, Ringe mit zwei verschiedenen Seiten herzustellen, die nach dem römischen Gott mit zwei Gesichtern Janus-Nanoringe genannt werden: Betrachtet man sie wie einen Frühstücksbagel, den man zum Bestreichen aufschneidet, so besteht die obere Hälfte aus einem anderen Polymer als die untere. Dadurch lassen sich unterschiedliche Eigenschaften einstellen, die für die jeweilige Anwendung geeignet sind.

Im nächsten Schritt wollen die Chemiker Scheiben herstellen und verschiedene Füllungsmuster untersuchen. Die grundlegende Frage ist auch hierbei: Über welche Methode lässt sich welche Struktur aufbauen? Denn für viele Anwendungen ist es essenziell, komplexe Nanostrukturen gezielt bilden zu können.

Hinweis für die Redaktion:
Ein Foto von Janus-Nanoringen (Fotonachweis: UDE/CENIDE) stellen wir Ihnen zum Download zur Verfügung:

https://www.uni-due.de/de/presse/pi_fotos.php

Das Bild zeigt: Rasterkraftmikroskopische Aufnahme einzelner Ringe. Der größte hat einen Durchmesser von etwa 500 Nanometern.

Redaktion: Birte Vierjahn, Tel. 0203/37 9-8176, birte.vierjahn@uni-due.de

Andrea Steinhaus, Tel. 0203/37 9-8219, andrea.steinhaus@uni-due.de

Confinement Assembly of ABC Triblock Terpolymers for the High-Yield Synthesis of Janus Nanorings
A. Steinhaus, R. Chakroun, M. Müllner, T. Nghiem, M. Hildebrandt, and A. H. Gröschel
ACS Nano 2019 13 (6), 6269-6278
https://doi.org/10.1021/acsnano.8b09546

Media Contact

Birte Vierjahn idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-duisburg-essen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer