Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstlernende Netzwerke lassen Forscher mehr sehen

07.12.2018

Dresdner Wissenschaftler entwickeln eine Methode, um die Grenzen der Mikroskopie zu überwinden

Moderne Mikroskope können mehrstündige 3D-Zeitrafferfilme von jeder einzelnen Zelle im sich entwickelnden Organismus aufnehmen.


Verrauschte Fluoreszenz-Mikroskopie-Aufnahme von Zellkernen des Plattwurmes Schmidtea mediterranea (oben) und nach der Bearbeitung durch CARE (unten)

© Martin Weigert, Tobias Boothe und Florian Jug/MPI-CBG, CSBD


Verrauschte Fluoreszenz-Mikroskopie-Aufnahme von Zellkernen des Plattwurmes Schmidtea mediterranea (oben) und nach der Bearbeitung durch CARE (unten)

© Martin Weigert, Tobias Boothe und Deborah Schmidt/MPI-CBG, CSBD

Genau wie bei normaler Fotografie benötigen Fluoreszenzmikroskope eine ausreichende Menge Licht, um dunkle und verrauschte Bilder zu vermeiden.

Allerdings kann die für solche Filme benötigte Lichtmenge die oft untersuchten Modellorganismen wie Würmer, Fische und Mäuse schädigen.

Bisher ist die einzige Möglichkeit, diesen "ultimativen Sonnenbrand" zu vermeiden, kürzere Filme aufzunehmen oder aber die verwendete Lichtmenge zu reduzieren.

Dadurch sind viele Biologen gezwungen, verrauschte und damit schwer interpretierbare Aufnahmen zu verwenden. Forscher um Florian Jug und Eugene W. Myers vom Zentrum für Systembiologie Dresden (CSBD) und vom Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG) haben nun eine inhaltssensitive Methode zur Bearbeitung von Mikroskopieaufnahmen entwickelt, die dieses Dilemma löst.

Die selbstlernende Software namens CARE basiert auf künstlichen neuronalen Netzwerken und macht die in schlecht ausgeleuchteten Mikroskopiebildern verborgenen Inhalte sichtbar. CARE-Netzwerke sind in der Lage, hochaufgelöste Bilder herzustellen, auch wenn sie mit bis zu 60 mal weniger Laserlicht aufgenommen wurden.

Damit ermöglicht CARE bildgebende Experimente, die bisher nicht denkbar waren. Die neue Methode ist frei verfügbar und so konzipiert, dass sie von jedermann genutzt und angepasst werden kann.

Fluoreszenz-Mikroskopie ist für die Grundlagenforschung im Bereich der Biomedizin unverzichtbar geworden. Die Technik kann die Position von fluoreszierenden Zellbausteinen in biologischen Geweben und Organismen sichtbar machen.

In lebenden Proben können über viele Stunden hinweg dynamische Prozesse aufgezeichnet werden, so dass die Forscher zum Beispiel untersuchen können, wie Zellen während der Embryonalentwicklung Gewebe und Organe formen.

Die Qualität der Bilder hängt jedoch stark von der Menge des bei der Aufnahme verwendeten Lichts ab. Lichtverhältnisse, die zu qualitativ hochwertigen Bildern führen, verursachen unerwünschte Nebenwirkungen.

Diese Nebenwirkungen sind als Phototoxizität bekannt und führen zu Veränderungen im Verhalten der Zelle; können für diese sogar tödlich sein. Darüber hinaus reagieren einige Organismen schon auf geringe Lichtmengen mit Muskelzucken, was die gewonnenen Daten ebenfalls unbrauchbar macht.

Um diesen "ultimativen Sonnenbrand" der Phototoxizität zu vermeiden, müssen die Forscher die Gesamtmenge des verwendeten Lichts stark reduzieren. Das führt zu minderwertigen Bildern, die schwer zu analysieren sind.

Eine interdisziplinäre Forschergruppe am CSBD und MPI-CBG in Dresden hat nun ein Verfahren entwickelt, um hochwertige Bilder mit bis zu 60 mal weniger Licht zu erzeugen. Der neuartige Ansatz - CARE - ist eine selbstlernende, inhaltssensitive Bildrestaurierungs-Software, die auf künstlichen neuronalen Netzwerken basiert.

Die Wissenschaftler kamen zu dem Schluss, dass man zwar keinen langen Film mit lauter hochwertigen Bildern aufnehmen kann ohne in die Phototoxizitäts-Falle zu laufen, es aber durchaus möglich ist, Schnappschüsse von Bilderpaaren aufzuzeichnen: je eins mit schlechter Lichtqualität und das andere mit ausreichend Licht, um sehr klare Bilder zu erzeugen.

Diese Schnappschuss-Paare werden dann verwendet, um selbstlernenden CARE-Netzwerken beizubringen, die "versteckten" Inhalte in stark verrauschten Bildern sichtbar zu machen, also qualitativ hochwertige Bilder zu rekonstruieren.

In ihrer kürzlich in Nature Methods veröffentlichten Studie zeigen die Forscher, dass CARE erfolgreich auf viele verschiedene Mikroskope, Experimente und Modellorganismen angewendet werden kann.

Martin Weigert, Erstautor und Mitglied der Myers Gruppe, sagt: "Ein wichtiger Nutzen unserer Methode ist, dass sie die Beobachtung von Zell- oder Gewebeprozessen unter sehr schwierigen Bedingungen ermöglicht, indem die Qualität der aufgenommenen Bilder deutlich verbessert wird“.

Sein ehemaliger Kollege im Myers Team und Co-Autor der Studie, Loïc Royer, der mittlerweile seine eigene Gruppe am Chan Zuckerberg Biohub in San Francisco leitet, fügt hinzu:

"Die Darstellung lebender Organismen erfordert oft Kompromisse. Mit CARE müssen Biologen solche drastischen Kompromisse nicht mehr eingehen. Unsere Methode macht bisher unmögliche bildgebende Experimente möglich."

"CARE ist ein Paradebeispiel für die Art von bahnbrechender Technologie, die ein interdisziplinärer Campus, wie unserer hier in Dresden-Johannstadt, hervorbringen kann. Informatiker, Physiker, Biologen und Chemiker des CSBD, des MPI-CBG und anderer DRESDEN-concept Institute haben eng zusammengearbeitet.

Jeder hat sein spezielles Wissen eingebracht, um diesen wichtigen Fortschritt zu erzielen!", sagt Florian Jug, der an vielen Aspekten der Arbeit beteiligt war. Er schließt: "CARE öffnet Fenster, durch die wir die Prozesse, die biologisches Leben steuern, besser beobachten können. Wir sind gespannt, was kreative Köpfe auf der ganzen Welt nun mithilfe von CARE erforschen werden."

Wissenschaftliche Ansprechpartner:

Dr. Florian Jug
+49 (0) 351 210 2486
jug@mpi-cbg.de

Originalpublikation:

Martin Weigert et al.: Content-aware image restoration: pushing the limits of fluorescence microscopy, Nature Methods, volume 15, pages 1090–1097 (2018), Veröffentlicht 26. November 2018 https://doi.org/10.1038/s41592-018-0216-7

Weitere Informationen:

http://www.csbdresden.de

Anja Glenk | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics