Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwimmen auf engstem Raum

14.02.2018

Göttinger MPI-Forscher entschlüsseln wie Mikroorganismen in komplexen Geometrien navigieren

Mikroben findet man in den unterschiedlichsten Lebensräumen und Ökosystemen, wo sie sich meist nahezu perfekt an ihre natürliche Umgebung angepasst haben. Insbesondere einzellige Mikroalgen leben nicht nur als Phytoplankton in den Meeren, sondern auch in feuchten Böden oder Oberflächenschichten von Gesteinen. Physiker vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation haben jetzt erstmals herausgefunden wie solche schwimmenden Mikroorganismen in komplexen Geometrien navigieren.


Schwimmen auf engstem Raum: Wie Mikroalgen in komplexen Geometrien navigieren.

Fabian Jan Schwarzendahl, MPIDS

Mikroorganismen können sich auf ganz unterschiedliche Arten fortbewegen. Viele Zelltypen haben spezielle Mechanismen entwickelt um durch Kriechbewegungen auf einer Oberfläche zu manövrieren. Insbesondere Mikroorganismen, die auch Photosynthese machen, leben jedoch nicht ausschließlich auf Oberflächen sondern auch in Flüssigkeit.

Dort können sie sich mittels sogenannter Flagellen, also mikroskopisch kleinen Härchen, fortbewegen. Im Falle der einzelligen Grünalge Chlamydomonas, einem in der Mikrobiologie weit verbreiteten Modellorganismus, schlagen zwei Flagellen synchron in einer Brustschwimmbewegung um die Zelle anzutreiben. So können die schwimmenden Mikroalgen ideal Nährstoffe und Lichtquellen aufspüren und legen dabei in jeder Sekunde etwa das Zehnfache ihrer eigenen Körpergröße als Strecke zurück.

Geometrie des Lebensraums beeinflusst Schwimmverhalten

Ein Forscherteam unter der Leitung der beiden Physiker Dr. Oliver Bäumchen und Dr. Marco Mazza vom Göttinger Max-Planck-Institut für Dynamik und Selbstorganisation hat nun herausgefunden wie diese Zellen in den komplexen porösen Strukturen aus Flüssigkeit und Oberflächen ihres natürlichen Lebensraums navigieren.

„Wir haben es erstmals geschafft einzelne lebende Zellen in parallel angeordneten, voneinander isolierten Kammern auf einem Mikrofluidik-Chip einzuschließen, die jeweils nicht größer als der Durchmesser eines menschlichen Haares waren. Mittels dieses Modellsystems konnten wir unter kontrollierten Laborbedingungen untersuchen, welchen Einfluss die Geometrie des Mikrolebensraums der Zellen auf deren Schwimmverhalten hat.“, sagt Oliver Bäumchen.

Das Theoretiker-Team unter Leitung von Marco Mazza hat dazu ein Computer-Modell entwickelt und die Experimente mit Simulationen untermauert. Ihre Erkenntnisse haben die Forscher jetzt in einem Fachartikel im renommierten Wissenschaftsmagazin Physical Review Letters veröffentlicht.

Oliver Bäumchen befasst sich schon mehrere Jahre mit der Funktionsweise der Flagellen und den physikalischen Mechanismen, mit denen diese für die Zellen enorm wichtigen Härchen mit Oberflächen wechselwirken.

Physiker Bäumchen erläutert: „Die einzellige Mikroalge Chlamydomonas ist ein ideales Modellsystem um viele spannende biophysikalische Phänomene zu studieren, beispielsweise das Anhaften der Flagellen auf Oberflächen, das synchronisierte Schlagen der Flagellen als Zellantrieb, das Zusammenspiel von molekularen Motoren und die Funktionsweise von Photorezeptoren als Lichtsensoren der Zellen.“

Runde um Runde

Die Experimente der in Mikrochips eingeschlossenen lebenden Zellen wurde von Bäumchens Mitarbeitern Tanya Ostapenko und Thomas Böddeker durchgeführt. „Wir haben systematisch die Größe der Kammern und die Geometrie der Wände variiert und herausgefunden, dass die Zellen mit zunehmender Krümmung der Wände immer seltener der Oberfläche entkommen. Die Zellen schwimmen erstaunlich lange in der Nähe der Wand und drehen dort ihre Runden.“, sagt Tanya Ostapenko, die Erstautorin der Studie. Es zeigte sich, dass die Flagellen beim Auftreffen auf eine Wand gegen diese schlagen und dabei die Zelle unter einem ganz bestimmten Winkel ablenken.

„Der Winkel unter dem die Zellen wegstreuen liegt bei nur etwa 10-20 Grad. Dies ist so flach, dass Mikroschwimmer in runden Kammern, kaum dass sie an einer Wand abgelenkt wurden, wieder auf die Wand treffen und ausreichend gekrümmten Wänden somit nur schwer entkommen können.“, sagt Fabian Schwarzendahl, Doktorand in der Theorie-Gruppe unter der Leitung von Marco Mazza.

Das Computermodell des Theoretiker-Teams um Marco Mazza bestätigt die Experimente sogar quantitativ und liefert somit ein wertvolles Werkzeug, das die Forscher nun auch für Simulationen anderer Systeme anwenden wollen. Marco Mazza sagt dazu: „Es gibt einen ganz grundsätzlichen Unterschied zwischen den von uns untersuchten Mikroalgen und den bisher studierten bakteriellen Mikroschwimmern. Bei vielen Bakterien ist der Flagellenantrieb am „Heck“ der Zelle statt an deren „Bug“ angebracht. Daher hatte man bisher erwartet, dass sich die Mikroalgen ganz anders als die Bakterien verhalten, wenn sie auf eine Wand treffen. In Umgebungen, die dem natürlichen Lebensraum der Mikroalgen nachempfunden wurden, ist dies überraschenderweise aber gar nicht der Fall.“

Mikroschwimmer besser verstanden

Seit einigen Jahren nutzt man die Photosynthese der Mikroalgen um in mit Glasröhrensystemen ausgestatteten Bioreaktoren beispielsweise Biotreibstoffe herzustellen. Über diese Anwendungen hinaus ist jedoch gerade der Modellcharakter der Zellen für die Forschung von enormer Bedeutung. Oliver Bäumchen: „Die Flagellen der Mikroalgen unterliegen einem universellen Bauprinzip der Natur, das man auch als sogenannte Zilien oder Flimmerhärchen im menschlichen Körper findet.

Diesen kommen enorm wichtige Funktionen zu, beispielsweise sorgen die Zilien von Lungenepithelzellen für den Abtransport von Schleim und das Entfernen von Partikeln in den Atemwegen während die Geißeln von Spermien deren Motilität ermöglichen.“ Mit den Ergebnissen des Forscherteams versteht man nun besser, wie sich Mikroschwimmer auf engstem Raum verhalten. Dies könnte von großer Wichtigkeit sein um beispielsweise mittels künstlicher Mikroschwimmer Medikamente an ihr Ziel zu bringen.

Weitere Informationen:

http://www.ds.mpg.de/3209573/180213_pm_swimmer
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.068002

Carolin Hoffrogge | Max-Planck-Institut für Dynamik und Selbstorganisation

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics