Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwefelbrücken in Wasser spalten ist komplizierter als gedacht

25.10.2016

Die Spaltung von Schwefelbrücken unter Zugspannung ist chemisch betrachtet ein wesentlich komplizierterer Prozess als bislang angenommen. Was dabei im Detail passiert, fanden Forscher um Prof. Dr. Dominik Marx von der Ruhr-Universität Bochum heraus – mithilfe umfangreicher Computersimulationen am Jülicher Supercomputer „Juqueen“. Ihre Ergebnisse veröffentlichten die Wissenschaftler in der Zeitschrift „Nature Chemistry“.

Abhängig davon, wie stark man an der Bindung zwischen zwei Schwefelatomen zieht, ändert sich der Reaktionsmechanismus, mit dem die Bindung gespalten wird. „Das wusste man bislang nicht, und es macht vor allem die korrekte Interpretation von experimentellen Daten viel komplexer als gedacht“, sagt Dominik Marx.


Dehnt man Gummibänder immer und immer wieder, gehen die Schwefelbrücken in dem Material kaputt. Das Gummi wird brüchig.

© RUB, Marquard

Schwefelbrücken unter Stress

Schwefelbrücken kommen zum Beispiel in Proteinen vor – um diese in bestimmten strukturellen Anordnungen zu halten, aber auch als Schalter für biologische Prozesse. Befinden sie sich in einer alkalischen wässrigen Lösung und man erhitzt diese, bringt das folgende chemische Reaktion in Gang: Ein Hydroxid-Ion (OH-) greift die Schwefelbrücke an, bildet eine neue Bindung mit einem der Schwefelatome aus und spaltet so die Bindung. Wissenschaftler bezeichnen diesen Mechanismus als alkalische Hydrolyse in Wasser.

Die Bochumer Forscher untersuchten, was passiert, wenn man die Schwefelbrücke zusätzlich unter Zugspannung setzt. Sie bauten ein entsprechendes Molekül in wässriger Lösung im Computer nach und zogen virtuell an beiden Enden der Bindung. „Solche mechanochemischen Prozesse treten tatsächlich für kleine Kräfte in Zellen auf, oder sie werden eingesetzt, um altes Gummi zu recyceln“, erklärt Marx.

Rolle des Wassers entscheidend

Entscheidend für die Simulation dieser Prozesse war es, die Rolle des umgebenden Wassers korrekt einzubeziehen. Das Hydroxid-Ion, das die Schwefelbrücke angreift, ist von einer Hülle aus Wassermolekülen umgeben, die sich im Lauf des Angriffs auf komplexe Weise verändert.

Üblicherweise nutzen Theoretiker Methoden, die die Effekte des umgebenden Wassers drastisch vereinfachen, um die benötigte Rechenleistung zu reduzieren. Um die Prozesse realistisch abzubilden, muss das Wasser aber ebenso wie alle anderen Moleküle quantenmechanisch berechnet werden. Nur dann liefert die Simulation den korrekten Energieverlauf der Reaktion in wässriger Lösung.

Immenser Rechenaufwand

Schlüssel zum Erfolg war eine besonders aufwendige Form der Computersimulation, die sogenannte ab initio Molekulardynamik-Methode. „Das erfordert allerdings einen immensen Rechenaufwand“, erklärt Marx. Dieser wurde von einem der schnellsten Rechner Europas geschultert – dem IBM-Blue-Gene/Q-Rechner „Juqueen“ des Jülich Supercomputing Centre am Forschungszentrum Jülich. Möglich war dies durch ein Großprojekt des Gauss Centre for Supercomputing.

Brutale Physik siegt über subtile Chemie

„Obwohl sich mit steigender Zugkraft komplexe chemische Prozesse abspielen, passiert bei einer maximal großen Kraft etwas ganz Einfaches“, erzählt Dominik Marx. Zieht man fest – mit etwa zwei Nanonewton Kraft – an der Bindung, findet keine alkalische Hydrolyse der Schwefel-Schwefel-Bindung mehr statt. Stattdessen reißt einfach die Bindung zwischen einem der Schwefelatome und einem benachbarten Kohlenstoffatom. Oder, wie Marx pointiert zusammenfasst: „Wenn rohe Kräfte walten, siegt die brutale Physik über die subtile Chemie.“

Förderung

Langjährige finanzielle Unterstützung für die Studie kam von der Deutschen Forschungsgemeinschaft im Rahmen des Reinhart-Koselleck-Projekts „Understanding Mechanochemistry“ (MA 1547/9) sowie des Exzellenzclusters Resolv (EXC 1069), der Alexander-von-Humboldt-Stiftung, der spanischen Regierung (Ramón-y-Cajal-Stipendium), dem National Science Center in Polen (2014/13/B/ST4/05009) sowie dem polnischen Ministry of Science and Higher Education (627/STYP/9/20l4).

Originalveröffentlichung

Przemyslaw Dopieralski, Jordi Ribas-Arino, Padmesh Anjukandi, Martin Krupicka, Dominik Marx: Unexpected mechanochemical complexity in the mechanistic scenarios of disulfide bond reduction in alkaline solution, in: Nature Chemistry, 2016, DOI: 10.1038/nchem.2632

Pressekontakt

Prof. Dr. Dominik Marx
Lehrstuhl für Theoretische Chemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 28083
E-Mail: dominik.marx@rub.de

Angeklickt

Frühere Presseinformation: Mechanochemie von Schwefelbrücken
http://aktuell.ruhr-uni-bochum.de/pm2013/pm00184.html.de

Reinhart Koselleck-Projekt
http://www.pm.rub.de/pm2008/msg00416.htm

Exzellenzcluster Resolv
http://www.ruhr-uni-bochum.de/solvation/

Jülich Supercomputing Centre
http://www.fz-juelich.de/ias/jsc/DE/Home/home_node.html

Gauss Centre for Supercomputing
http://www.gauss-centre.eu/

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen
16.10.2019 | Max-Planck-Institut für Neurobiologie

nachricht Blasentang zeigt gekoppelte Reaktionen auf Umweltveränderungen
15.10.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

16.10.2019 | Messenachrichten

Es braucht mehr als einen globalen Eindruck, um einen Fisch zu bewegen

16.10.2019 | Biowissenschaften Chemie

Blindgänger mit Laser entschärft: Erfolgreicher Feldversuch zum Projektende

16.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics