Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schwarzer Hautkrebs: Neue potentielle Biomarker für aggressiveres Tumorverhalten entdeckt

12.09.2019

Göttinger Wissenschaftler mit neuen Erkenntnissen zur molekularen Maschinerie des Melanoms, zur Rolle von Mitochondrien, Sauerstoffradikalen und Transkriptionsfaktor NFAT1. Sie entdecken neue potentielle Biomarker für aggressiveres Tumorverhalten beim Schwarzen Hautkrebs. Veröffentlichung in „The EMBO Journal“.

Schwarzer Hautkrebs (Melanom) gilt als die gefährlichste Form von Haut-krebs. Trotz neuer Therapieformen ist die Prognose im metastasierten Stadium besorgniserregend. Rückfallquoten und Resistenzentwicklung gelten weiterhin als Herausforderung bei der Behandlung des Melanoms. Insbesondere fehlen Biomarker, mit denen sich vorhersagen ließe, ob eine Therapie ansprechen wird und wie die Krankheit verläuft.


Fluoreszenz Mikroskopie Aufnahme von einer Melanom-Zelle (grün) mit Mitochondrien (rot) in Aufsicht und Seitenansicht. Von den Aufnahmen wurde eine 3D-Rekonstruktion angefertigt

Quelle: Zhang et al. The EMBO Journal (2019)

Göttinger Wissenschaftlern ist es nun gelungen, Proteine zu identifizieren, die über ein besonders aggressives Verhalten von Melanomzellen Aufschluss geben. Als Biomarker könnten diese Proteine geeignet sein, einen ungünstigeren Krankheitsverlauf vorherzusagen.

Die Erkenntnisse der Forscher könnten künftig dazu dienen, besonders gefährdete Patienten zu identifizieren und die Behandlungskontrollen oder die Therapie entsprechend anzupassen. Allerdings bedarf dies weiterer Untersuchungen vor der Anwendbarkeit in der Klinik.

Die Forschungen wurden von Wissenschaftlern der Arbeitsgruppe von Prof. Dr. Ivan Bogeski am Institut für Herz- und Kreislaufphysiologie der Universitätsmedizin Göttingen (UMG) in Zusammenarbeit mit Ärzten der Klinik für Dermatologie und Venerologie und Wissenschaftlern des Instituts für Zellbiochemie der UMG sowie des Max-Planck-Institutes für experimentelle Medizin in Göttingen durchgeführt. Die Forschungsergebnisse sind veröffentlicht in der Fachzeitschrift „EMBO Journal“.

Originalarbeit: Redox signals at the ER–mitochondria interface control melanoma progression. Xin Zhang, Christine S Gibhardt, Thorsten Will, Hedwig Stanisz, Christina Körbel, Miso Mitkovski, Ioana Stejerean, Sabrina Cappello, David Pacheu-Grau, Jan Dudek, Nasser Tahbaz, Lucas Mina, Thomas Simmen, Matthias W Laschke, Michael D Menger, Michael P Schön, Volkhard Helms, Barbara A Niemeyer, Peter Rehling, Adina Vultur & Ivan Bogeski. The EMBO Journal (2019) e100871 Accepted 23 May 2019, DOI 10.15252/embj.2018100871

Die Göttinger Forscher sind tief in die molekulare Maschinerie des schwarzen Hautkrebs eingetaucht. Wie Mitochondrien, Sauerstoffradikale und Resistenzentwicklung zusammenhängen und welche Proteine möglicherweise über aggressivere Krankheitsverläufe Aufschluss geben, ist immer noch nicht vollständig aufgeklärt. Die Wissenschaftler konnten hier neue Zusammenhänge aufzeigen, die möglicherweise bald in der Klinik Verwendung finden könnten.

HINTERGRUNDINFORMATION

Das Melanom zeichnet sich vor allem durch eine Vielzahl von Veränderungen im Erbgut, so genannte Mutationen aus. Die häufigste Mutation ist die sogenannte BRAF-Mutation. Hier kommt es zur Veränderung eines Proteins in einem bestimmten Signalweg: Der MAP-Kinase-Signalweg (MAP, englisch mitogenactivated protein) übermittelt in einer Kaskade Signale von außen in das Zellinnere und reguliert somit unter anderem die Zellreifung, das Zellwachstum und den programmierten Zelltod.

Die BRAF-Mutation hat für die Behandlung des Melanoms eine besondere Bedeutung. Sie wird von den aktuell eingesetzten zielgerichteten Therapien attackiert. Somit wird der MAP-Kinase-Signalweg für die Behandlung des schwarzen Hautkrebses genutzt. Allerdings kommt es bei dieser Therapie oft im Verlauf zur Resistenzentwicklung, so dass die Wirksamkeit der Medikamente nachlässt. Eine wichtige Rolle bei der Resistenzentwicklung scheinen die Kraftwerke der Zellen (Mitochondrien) und auch freie Sauerstoffradikale (ROS) zu spielen, die u.a. als Abfallprodukte bei der Energiegewinnung entstehen. Sie bieten daher möglicherweise einen neuen Angriffspunkt für die Behandlung des Melanoms.

FORSCHUNGSERGEBNISSE IM DETAIL

Die Göttinger Wissenschaftler konnten erstmals zeigen, dass Kontaktstellen zwischen Zellorganellen, den Mitochondrien und dem Endoplasmatischen Retikulum (ER) mit bestimmten Proteinen angereichert sind. Die Proteine TMX1 und TMX3 (Thioredoxin Related Transmembrane Protein 1 und 3) sind Teil eines Systems, das in der Lage ist, Sauerstoffradikale in der Zelle zu entsorgen. Die Forscher konnten nachweisen, dass TMX1 und TMX3 sowie ein bestimmter nachgeschalteter Transkriptionsfaktor NFAT1 (Nuclear Factor of Activated T-cells 1), der die Genaktivität reguliert, in Zellen des Schwarzen Hautkrebses erhöht sind. Sie fanden zudem heraus, dass die Menge dieser Proteine mit der Aggressivität des Tumors in Wechselbeziehung steht. Das bedeutet, je mehr von den Proteinen TMX1 und TMX3 vorhanden ist, desto schneller vermehren sich die Tumorzellen bzw. desto schneller wächst und streut der Tumor.

„Eine Hemmung von TMX1 und TMX3 in den Tumorzellen verändert die Kontakt-stellen zwischen den Mitochondrien und dem ER. Hierdurch werden vermehrt Sauerstoffradikale produziert, wodurch die Aktivität von NFAT1 abnimmt. Dies führt zu einer geringeren Expression der durch NFAT1 regulierten Gene, was letztendlich das Tumorwachstum drosselt“, sagt Prof. Dr. Ivan Bogeski, Senior-Autor der Publikation.

Unter anderem führten die Erstautoren Xin Zhang und Dr. Christine Gibhardt, beide vom Institut für Herz-und Kreislaufphysiologie, UMG, eine umfangreiche Analyse von Patientendaten durch. Zusammen mit den Koautoren konnten sie zeigen, dass eine Vielzahl von mitochondrialen und redoxassoziierten Genen, die das Tumorwachstum fördern, unter der Kontrolle des Transkriptionsfaktors NFAT1 stehen. Sind TMX1 und TMX3 sowie NFAT1 in den Tumoren erhöht, geht dies mit einem schlechteren Erkrankungsverlauf einher. Dies gilt insbesondere für Tumoren, die keine BRAF-Mutation aufweisen.

BILDUNTERSCHRIFT: Fluoreszenz Mikroskopie Aufnahme von einer Melanom-Zelle (grün) mit Mitochondrien (rot) in Aufsicht und Seitenansicht. Von den Aufnahmen wurde eine 3D-Rekonstruktion angefertigt und die Mitochondrien-Anzahl in einem Bereich (graue Schattierung im letzten Bild) in der Querschnittsfläche bestimmt. Quelle: Zhang et al. The EMBO Journal (2019)

WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Herz-Kreislaufphysiologie
Prof. Dr. Ivan Bogeski
Telefon 0551 / 65520
ivan.bogeski@med.uni-goettingen.de

Wissenschaftliche Ansprechpartner:

Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Herz-Kreislaufphysiologie
Prof. Dr. Ivan Bogeski
Telefon 0551 / 65520
ivan.bogeski@med.uni-goettingen.de

Originalpublikation:

Originalarbeit: Redox signals at the ER–mitochondria interface control melanoma progression. Xin Zhang, Christine S Gibhardt, Thorsten Will, Hedwig Stanisz, Christina Körbel, Miso Mitkovski, Ioana Stejerean, Sabrina Cappello, David Pacheu-Grau, Jan Dudek, Nasser Tahbaz, Lucas Mina, Thomas Simmen, Matthias W Laschke, Michael D Menger, Michael P Schön, Volkhard Helms, Barbara A Niemeyer, Peter Rehling, Adina Vultur & Ivan Bogeski. The EMBO Journal (2019) e100871 Accepted 23 May 2019, DOI 10.15252/embj.2018100871

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Von IT-Rack bis Edge: Antworten für die industrielle Transformation

10.07.2020 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics