Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schutz vor schwerer Malaria geklärt

11.11.2011
Defekter Blutfarbstoff blockiert Aufbau eines wichtigen Transportsystems des Malariaparasiten in infizierten Blutkörperchen / Heidelberger Wissenschaftler berichten in „Science“

Warum bekommen Menschen, die an einer erblichen Veränderung des roten Blutfarbstoffes Hämoglobin leiden, wie bei der in Afrika häufigen Sichelzellanämie, keine schwere Malaria?


In roten Blutkörperchen mit normalem Hämoglobin baut der Malaria-Erreger Plasmodium falciparum ein Transportsystem (gelb) auf. Darüber gelangen Eiweiße des Parasiten - in Transporthüllen verpackt - (türkis) direkt zur Zelloberfläche des roten Blutkörperchens. Bild: courtesy of Science/AAAS.


In roten Blutkörperchen mit veränderten Hämoglobinvarianten zerfällt das Transportsystem in kurze Stücke (gelb). Ein gezielter Transport von Eiweißen an die Oberfläche kommt nicht zustande. Bild: courtesy of Science/AAAS.

Wissenschaftler um Professor Dr. Michael Lanzer vom Department für Infektiologie am Universitätsklinikum Heidelberg haben dieses Rätsel gelöst: Ein Abbauprodukt des veränderten Hämoglobins schützt vor einem schweren Verlauf der Malaria. Innerhalb der vom Malaria-Erreger infizierten roten Blutkörperchen blockiert es den Aufbau eines Transportsystems, über das spezielle Haftproteine des Erregers an die Außenseite der Blutzellen gelangen. So bleiben die befallenen Blutzellen nicht – wie für diese Malariaform typisch – an den Gefäßwänden hängen. Gefährliche Durchblutungsstörungen und neurologische Komplikationen bleiben aus. Die Forschungsarbeit ist – vorab online - im Fachmagazin „Science“ veröffentlicht.

In den 1940er Jahren haben Forscher bereits entdeckt, dass die Sichelzellenanämie mit ihrer charakteristischen Blutveränderung in bestimmten Bevölkerungsgruppen Afrikas besonders häufig vorkam, die außerdem die normalerweise besonders schwer verlaufende „Malaria tropica“ überlebten. Hierbei gelangen die Malaria-Parasiten (Plasmodien) beim Stich infizierter Anopheles-Mücken in den Menschen, wo sie sich zunächst in den Leberzellen vermehren und dann die roten Blutkörperchen (Erythrocyten) befallen. Im Inneren der Erythrocyten teilen sie sich erneut und zerstören diese schließlich. Das nahezu gleichzeitige Aufplatzen aller befallenen Blutzellen verursacht die charakteristischen Beschwerden wie Fieberschübe und Blutarmut.

Haftproteine auf roten Blutkörperchen verursachen Durchblutungsstörungen

Bei der Malaria tropica kommt es zudem häufig zu neurologischen Komplikationen wie Lähmungen, Krämpfen, Koma sowie schweren Gehirnschäden. Grund dafür ist eine Eigenart des Erregers Plasmodium falciparum: Er bildet spezielle Haftproteine, die zur Zelloberfläche der befallenen Blutkörperchen gelangen. Dort sorgen sie dafür, dass die Erythrocyten an Gefäßwänden haften bleiben – sie können damit nicht in der Milz als beschädigt erkannt und aus dem Verkehr gezogen werden. Der Schutzmechanismus des Parasiten hat zur Folge, dass sich kleinere Gefäße verschließen, entzünden und z.B. Teile des Nervensystems nicht mehr ausreichend mit Sauerstoff versorgt werden.

Diese Komplikationen treten bei Menschen mit veränderten Varianten des Hämoglobins abgeschwächt oder gar nicht auf. „Auf der Zelloberfläche befallener Erythrocyten mit verändertem Hämoglobin finden sich deutlich weniger Haftproteine des Parasiten als bei normalen roten Blutkörperchen“, erklärt Professor Lanzer, Direktor des Instituts für Parasitologie. „Wir haben daher den Transportweg innerhalb der Wirtszelle genauer untersucht.“ Das Team verglich dazu Blutzellen mit normalem Hämoglobin und zwei Hämoglobinvarianten (Hämoglobin S und Hämoglobin C), die bei rund einem Fünftel der afrikanischen Bevölkerung in Malaria-Gebieten vorkommen.

Transportsystem des Malaria-Erregers erstmals sichtbar gemacht

Dabei entdeckten die Wissenschaftler mit Hilfe hochauflösender Mikroskopieverfahren wie der Kryo-Elektronentomographie einen neuen Transportmechanismus: Der Parasit verwendet ein bestimmtes Eiweiß (Aktin) aus dem Zellskelett des Erythrocyten für ein eigenes Wegenetz. „Es bildet sich ein vollständig neues Gebilde, das keine Ähnlichkeit mit dem übrigen Zellskelett hat“, erklärt Dr. Marek Cyrklaff, Arbeitsgruppenleiter am Institut für Parasitologie und Erstautor des Artikels. „Über diese Aktinfasern gelangen die Vesikel mit den Haftproteinen vom Parasiten direkt zur Zelloberfläche des roten Blutkörperchens.“

Anders bei Erythrocyten mit den beiden Hämoglobinvarianten: Hier finden sich nur kurze Aktin-Ästchen, ein gezielter Transport zur Oberfläche ist nicht möglich. „Das gesamte Transportsystem des Malaria-Erregers ist in diesen Blutzellen degeneriert“, so Cyrclaff. Labortests ergaben, dass dafür nicht die Hämoglobine selbst, sondern ein Abbauprodukt, das Ferryl-Hämoglobin, verantwortlich ist. Dabei handelt es sich um irreversibel geschädigtes, chemisch verändertes Hämoglobin, das keinen Sauerstoff mehr binden kann. Die Hämoglobine S und C sind deutlich instabiler als normales Hämoglobin; in Blutzellen mit diesen Varianten findet sich daher zehnmal mehr Ferryl-Hämoglobin als in anderen Erythrocyten. Diese hohe Konzentration destabilisiert die Bindungen des Aktingeflechts – es zerfällt.

„Mit Hilfe dieser Ergebnisse haben wir erstmals einen molekularen Mechanismus beschrieben, der die Schutzwirkung dieser Hämoglobinvarianten gegen Malaria erklärt“, sagt Professor Lanzer.

Literatur:
Hemoglobins S and C interfere with Actin Remodeling in Plasmodium falciparum-Infected Erythrocytes: Marek Cyrklaff, Cecilia P. Sanchez, Nicole Kilian, Cyrille Bisseye, Jacques Simpore, Friedrich Frischknecht and Michael Lanzer. Science DOI: 10.1126/science.1213775
Kontakt:
Professor Dr. Michael Lanzer
Direktor des Instituts für Parasitologie
Department für Infektiologie am Universitätsklinikum Heidelberg
Tel.: 06221 / 56 78 45
E-Mail: michael.lanzer@med.uni-heidelberg.de
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 10.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 50 Departments, Kliniken und Fachabteilungen mit ca. 2.000 Betten werden jährlich rund 550.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.600 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland.
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics